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Abstract Along with the advance of internet and fast updating of information, nowadays it

is much easier to search and acquire scientific publications. To identify the high quality

articles from the paper ocean, many ranking algorithms have been proposed. One of these

methods is the famous PageRank algorithm which was originally designed to rank web pages

in online systems. In this paper, we introduce a preferential mechanism to the PageRank

algorithm when aggregating resource from different nodes to enhance the effect of similar

nodes. The validation of the new method is performed on the data of American Physical

Society journals. The results indicate that the similarity-preferential mechanism improves the

performance of the PageRank algorithm in terms of ranking effectiveness, as well as

robustness against malicious manipulations. Though our method is only applied to citation

networks in this paper, it can be naturally used in many other real systems, such as designing

search engines in the World Wide Web and revealing the leaderships in social networks.

Keywords PageRank � Citation network � Similarity � Robustness

Introduction

Following up the latest research progress is the daily task that each scientist should do.

Nowadays, many new journals are created to accelerate the publication of scientific

research results. Though this effort seems to make the latest findings more accessible to

scientists, the reality is that the barrier for us to find the truly significant research progress
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becomes higher. This is due to the fact that we need to spend more and more time picking

up the relevant and high quality papers from thousands of new papers. Therefore, a

question raises naturally: how to objectively rank the quality of scientific publications (e.g.,

Radicchi et al. 2008; Maslov and Redner 2008; Frey and Rost 2010; Sorzano et al. 2014).

This research problem has been studied intensively, yet the best ranking algorithm still

remains to be found.

Though the Google’s PageRank algorithm (Brin and Page 1998) was originally pro-

posed to rank online web pages, it has remarkably pushed forward the research on scientific

publication ranking. The PageRank algorithm provides a new perspective to the study of

finding high quality articles and has broad application prospects in citation analysis. Its

basic idea is that one should not only consider the number of citations that a paper received

but also which papers cited it. After PageRank algorithm was introduced to scientometrics

(e.g., Bollen et al. 2006; Chen et al. 2007; Fiala et al. 2008; Ma et al. 2008), a variety of

modifications have been done (Fiala 2012; Nykl et al. 2014; Su et al. 2011; Walker et al.

2007; Yao et al. 2014). For instance, Su et al. (2011) propose PrestigeRank algorithm

based on the results that the missing data has an impact on the rank of papers with the

PageRank algorithm. Moreover, CiteRank (Walker et al. 2007) modifies the PageRank

algorithm by initially distributing random surfers exponentially with age in order to

account for strong ageing characteristics of citation networks. Fiala proposes a time-aware

PageRank algorithm for citation networks (Fiala 2012). Yao et al. (2014) introduce non-

linearity to the PageRank algorithm for further enhancing the effect of high score papers.

The PageRank algorithm has also been applied to a more aggregated level such as ranking

the importance of different fields, journals (González-Pereira et al. 2010), scientists (e.g.,

Radicchi et al. 2009; Ding et al. 2009; Yan and Ding 2011; Ding 2011), institutions (Yan

2014). An example is that the idea of PageRank is introduced to design the eigenfactor

index (Bergstrom 2007; Fersht 2009) which better measures the influence of journals than

the traditional impact factor (Bergstrom and West 2008).

The PageRank algorithm is an iterative process on networks. In each step, the resource

of each node is updated by aggregating the resource passed from all the papers that cite it.

However, this might cause some problems when PageRank is applied to real citation

networks in which some noisy and malicious behaviors exist (Yao et al. 2014). For

instance, some researchers might deliberately cite their own papers when they publish new

papers to push up the influence of their old publications. When referring to a technical

term, some authors might neglect the original literature but cite recent but less relevant

publications, resulting in assigning citations to inappropriate papers. These behaviors may

distort the obtained ranking of PageRank (Aksnes 2003; Foley and Della Sala 2010). In

fact, many approaches have been developed to remove the noisy and spurious connections

in networks (Guimerà and Sales-Pardo 2009; Zeng and Cimini 2012). The basic idea is to

consider the similarity between nodes: a connection between dissimilar nodes is more

likely to be a spurious connection. Inspired by this idea, we propose to redesign the

resource updating rules in the PageRank algorithm according to node similarity.

In this paper, we introduce a preferential mechanism to the PageRank algorithm when

aggregating resource from different nodes to enhance the effect of similar nodes. In other

words, a node tends to receive resource from downstream nodes (the citing papers) that are

similar to it. The method is denoted as similarity-preferential rank (SPRank). We use the

citation network constructed from the data of American Physical Society (APS) journals to

validate the SPRank method. We first study the basic statistics of the SPRank method and

compare the ranking similarity between it and the traditional PageRank method. Then we

investigate the effectiveness of SPRank. We find that SPRank can improve the ranking of
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the high quality papers (e.g. Nobel prize winning papers). It can also significantly out-

perform PageRank in predicting the future citation growth of papers. Finally, when some

papers maliciously cite a target paper to push up its citation, the SPRank method can

effectively suppress the ranking of this target paper.

Method

Data collection

The database used in this paper is from the American Physical Society (APS) journals in

the period from 1893 to 2009. The journals include Physical Review series, and Reviews of

Modern Physics. In total, the data contains 462,720 papers with 4,620,025 citations. For

each paper, the information about its DOI, authors, publication time and the DOI of its

citing papers is all available in the database. Based on the above information, we construct

a citation network in which nodes represent papers and edges stand for the citing relation

between papers. The citation network is directed and acyclic. The indegree of a node is the

number of citations it receives and the outdegree of a node is the number of papers it cites.

The SPRank method

We first briefly describe the classic PageRank algorithm. The citation network could be

described by adjacency matrix A with the element Aij ¼ 1 if paper i cites paper j and

Aij ¼ 0 if there is no citation relationship between paper i and paper j. We define the cited

paper as the upstream node and the citing paper as the downstream node. PageRank was

proposed by Page et al. for webpage ranking (1998). The algorithm can be expressed

mathematically as follows:

sjðtÞ ¼ c þ ð1 � cÞ
XN

i¼1

Aij

kout
i

1 � dkout
i

;0

� �
þ 1

N
dkout

i
;0

� �
siðt � 1Þ ð1Þ

where da;b ¼ 1 when a = b, and da;b ¼ 0 otherwise. In Eq. (1), N is the total numbers of

nodes in the network, kout
i is the number of outgoing links of node i, sj is the PageRank

score of node j through t steps iterative process and the same for si, c is called the return

probability. The PageRank algorithm can be regarded as a random walk process on the

directed network. c is the probability for a random walker to jump to a random node from

the present node and (1 - c) can represent the probability for a random walker to continue

walking through the outgoing links of the present node. In this paper, we fix c = 0.15

which is the typical value of c in computer science (Brin and Page 1998). Usually the

initial configuration is to set s(0) = 1 for all nodes. The final score of each node is defined

as the steady value when siðtÞ stays convergent. We define the final ranking of nodes in

PageRank as Rp, which can be obtained by sorting the final scores of nodes in descending

order. The notations used here for PageRank are different from those in the original paper

from Brin and Page (1998) because the current notations are more convenient for intro-

ducing the following SPRank method.

The SPRank method is directly built on PageRank. The basic idea is that not all the

papers in a paper’s reference list is equally important to it. Normally, two papers that are

topologically similar to each other must be relevant in the topic or the method. If a paper

cites another paper that is similar to it, this is an ‘‘effective’’ citation as the citing paper
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might be inspired by the cited paper or employs the algorithm in the cited paper. On the

other hand, if a paper is cited by many dissimilar papers, it could be the case that the

authors select references carelessly or the authors maliciously aim to push up a low quality

paper. Therefore, in SPRank when the upstream node aggregates the score sent by the

downstream node, the score sent by dissimilar nodes will be suppressed. In this way, even

if a node is cited by many dissimilar papers, its final score cannot be high. The formula for

SPRank reads as

sjðtÞ ¼ c þ ð1 � cÞ
XN

i¼1

f hij Aij

kout
i

ð1 � dkout
i

;0Þ þ
1

N
dkout

i
;0

 !
siðt � 1Þ; ð2Þ

where fij is the similarity between node i and j (fij 2 ½0; 1�) and h is a tunable parameter

(h� 0). When h ¼ 0, SPRank reduces to the classic PageRank. As h gets larger, the score

sent by dissimilar downstream nodes is suppressed more severely. We define the final

ranking of nodes in SPRank as Rs which can be obtained by sorting the final score of nodes

in descending order. Similarity fij in Eq. (2) could be estimated in multiple ways. In this

paper, we adopt the cosine metric to measure nodes’ similarity based on their outgoing

links. It can be written as

fij ¼
jsðiÞ \ sðjÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kout
i kout

j

q ; ð3Þ

where sðiÞ and sðjÞ are respectively the set of the upstream neighbors of node i and j. The

illustration of the SPRank algorithm is shown in Fig. 1.

In fact, we also tested the case where the node similarity fij is measured by the cosine

index based on nodes’ incoming links. However, due to the heterogeneous indegree dis-

tribution (i.e. many nodes are with no citation and hence zero indegree), the similarity

between most of the nodes is zero. The indegree and out degree distributions of the APS

Fig. 1 (Color online) The illustration of the SPRank algorithm. a The calculation of the cosine index.
jsðiÞ \ sðjÞj is the number of co-cited papers (or called common neighbors) of two particular papers i and j in
the citation network. It is then used as the numerator of the Cosine similarity index (see the equation of fij in

this figure). b The aggregation process of the score from the downstream papers
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citation network are shown in the Supplementary Information (SI). The ranking perfor-

mance of SPRank with the incoming link is even lower than PageRank. This is why we use

cosine metric based on nodes’ outgoing links for the SPRank method. We also applied

some other similarity indexes such as Jaccard, Hub-promoted-index, Hub-suppressed-in-

dex in our method (Lü and Zhou 2011). They all present similar results as the cosine index.

Results and discussion

Basic properties of the SPRank method

To begin our analysis, we study the basic properties of the SPRank method. As mentioned

above, we will make use of the APS citation network to examine the performance of

SPRank in the following analysis. One of the basic properties is the convergence of the

method. As there is nonlinearity in the formula, the convergence of the method cannot be

directly proved by the Perron–Frobenius theorem (Perron 1907; Frobenius 1912). Instead,

we numerically investigate the convergence of our method. We first study the dependence

of the total score on the iteration steps in Fig. 2a. One can see that the total score remains

unchanged when h ¼ 0. However, when h[ 0 the total score first decreases with the

iteration steps and then remains stable. We define a quantity error at step t as
P

i jsiðtÞ �
siðt � 1Þj where siðtÞ is the score of node i at iteration step t. The results of error in

different iteration steps are shown in Fig. 2b. If error can finally achieve a very small

value, the ranking algorithm converges. It can be seen that SPRank converges under

different h. We also can find that our method’s convergence speed increases with h. Based

on the above results, we stop the iterations when t = 50 in our simulation since nodes’

score has reached the stable state. Another basic property of the method is the distribution

of the final scores. In Fig. 2c, we investigate the distributions of the final SPRank score

under different h. We can find that the distribution of SPRank scores under different h all

roughly follows power-law form with the scaling exponents increasing with h. Note that

even though the total score decreases with the iteration steps, it can always be normalized

to 1 like the classic PageRank algorithm. As we mainly focus on the ranking based on the

scores, the normalization is not done in SPRank.
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Fig. 2 (Color online) a The dependence of the total score on the iteration steps in SPRank, b the
dependence of the total quantity error on iteration step t in SPRank and c the cumulative distribution of the
final SPRank score. In each sub-figure we fix c = 0.15 but consider different h value. Notice that SPRank
reduces to PageRank when h ¼ 0
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We then study the similarity between SPRank and the other two standard methods (i.e.

degree rank and PageRank). PageRank is introduced above, the Degree rank simply ranks

papers according to their received citations (i.e. indegree). Specifically, we investigate the

Pearson correlation coefficient and Spearman correlation coefficient between the scores of

different methods. The results are shown in Fig. 3. Firstly, the score correlation between

SPRank and the other two methods is shown in Fig. 3a, b, respectively. One can see the

correlation between SPRank and PageRank decreases with h. The curve starts from 1

because the SPRank reduces to PageRank when h ¼ 0. The Pearson correlation coefficient

of SPRank and PageRank stays at a low value when h[ 0:1, but their Spearman corre-

lation coefficient is higher. Normally, the highly cited papers are more important. We

therefore further consider the score correlation between top-n most popular papers in

Fig. 3c, d (with top-1000) and Fig. 3e, f (with top-100). We find that the Pearson corre-

lation coefficient in these highly-cited papers are similar to the overall Pearson correlation

coefficient. However, the Spearman correlation coefficient of the highly-cited papers is

significantly different from the overall Spearman correlation, indicating the ranking of

highly-cited papers changes remarkably by introducing the parameter h.
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The effectiveness of the SPRank method

A well-performing ranking algorithm should be able to identify the truly influential nodes.

As we can have access to the title of each paper, we can identify a set of these papers by

selecting the Nobel prize winning papers. We regard these papers as a benchmark set to

examine the performance of the PageRank and SPRank in identifying the high quality

papers. The algorithm that can rank these papers higher is better. Here, we use 24 articles

which author is awarded the Nobel Prize in Physics from the year 1980–2013 as our

benchmark articles (see SI for details). We compare the mean rank of these papers in the

PageRank and SPRank algorithms in Fig. 4. The mean rank is easy to compute. However,

the result might be dominated by some lowly ranked papers. To avoid this, we propose a

mean relative rank to double check the results. To obtain the mean relative rank, we first

divide the rank of each Nobel prize winning paper with specific h by the rank of this paper

with h ¼ 0, i.e. computing the ratio of the rank in SPRank and the rank in PageRank. Then

this ratio of all Nobel prize winning papers is averaged to obtain the mean relative rank. If

the mean relative rank decreases with h, SPRank indeed outperforms PageRank.

In Fig. 4a, we observe that the mean rank obtains the minimum value when h ¼ 0:1. In

Fig. 4b, the mean relative rank obtains the minimum value when h is about 0.05. h is a

tunable parameter controlling the effect of similarity in the SPRank method. When h ¼ 0,

SPRank method degenerates to the traditional PageRank method. When h[ 0, an

upstream node unevenly aggregates the scores from downstream nodes. The score from

dissimilar downstream nodes will be suppressed. The higher the h is, the stronger the

suppressing effect is. The accuracy first increases with h because some noisy and unreliable

connections in the citation network are neglected by the SPRank method. However, as h
further increases, the score from dissimilar downstream nodes is overly suppressed,

resulting in significantly loss of information in the citation network. The most extreme case

is when h is infinitely large, every upstream node only aggregates the score from the most

similar downstream node. The dramatic loss of information leads to the decrease of the

accuracy. Therefore, the mean rank and the mean relative rank can achieve a minimum

value at a certain h. Taken together, we could conclude that SPRank can indeed outperform

PageRank in identifying these truly influential papers. However, one shouldn’t set h to a

too large value. In the literature, it has been pointed out c = 0.5 in PageRank is a better
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Fig. 4 (Color online) The dependence of the mean rank and the mean relative rank of 24 Nobel prize
winning papers in SPRank on parameter h in the (a) and (b), respectively
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parameter for citation networks (Walker et al. 2007). Accordingly, we have also carried

out the simulation in Fig. 4 with c = 0.5. The simulation results show that the SPRank

with c = 0.5 performs worse than c = 0.15.

We further study the capability of the SPRank method in predicting the papers’ future

citations. We first choose a testing time t and construct the citation network based on all

historical data before t. Then we calculate the PageRank and SPRank’s score under dif-

ferent h based on the above citation network. The aim is to see whether PageRank and

SPRank’s score (s) can predict the future degree growth of the papers or not. To avoid the

absolute cold-start problem, we select the papers which indegree is not zero and the

publication time is [t � Dt1; t] and then compute their future degree increment Dk in the

future time [t; t þ Dt2]. We calculate the Pearson correlation coefficient between s and Dk

to measure the method’s prediction ability. The Pearson correlation coefficient is defined as

the prediction accuracy of the SPRank method. In order to test the capability of the method

in predicting small degree nodes, we also consider a set of nodes whose historical indegree

is between [1, 20].

We select 20 testing time t from 1980 to 1999 with Dt1 ¼ 3 and different Dt2. We use

Dt2 ¼ 3 in Fig. 5a, b. Interestingly, like the results with the Nobel prize winning papers,

there is a optimum of the Pearson correlation coefficient when varying h. The peak exists

for both node sets (i.e. nodes with nonzero historical indegree and nodes with [1, 20]

historical indegree). The highest correlation coefficient is achieved when h ¼ 0:1, indi-

cating that the SPRank method can improve the prediction ability compared with

PageRank algorithm. We then study the effect of the length of future time on predicting the

future in Fig. 5c, d. The curve of SPRank in Fig. 5c, d shows its optimal results (i.e. the
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results when h ¼ 0:1). One can see that SPRank constantly outperforms PageRank in

prediction.

The robustness of the SPRank method

In citation networks, it is common that some researchers try to manipulate the citations by

self-citation or by deliberately citing his/her friends’ papers. For instance, some researchers

might deliberately cite their own papers when they publish new papers to push up the

influence of their old publications. Consequently, self-citations are found to be very often

in citation networks (Ioannidis 2015). Moreover, some irresponsible authors might care-

lessly select the references in their papers, resulting in assigning citations to inappropriate

papers. These behaviors may exert an obvious effect on the ranking of scientific publi-

cations. Therefore, it is necessary for the designed ranking algorithm to be robust against

these malicious behaviors. We further investigate the robustness of the SPRank algorithm

against malicious manipulations.

Firstly, based on the APS data from 1893 to 2009, we construct a true citation network.

Then we randomly select one paper with indegree k = 0 and regard this paper as the target

paper they want to push up. We add n papers with m links each into the citation network.

These new papers all cite the target paper and other m - 1 links each will randomly

connect to other nodes. The rank of the target paper in PageRank and SPRank in the initial

network are denoted as RpðN0Þ and RsðN0Þ, respectively. At the same time, we define the

rank of the target paper in PageRank and SPRank as RpðNhÞ and RsðNhÞ after adding hth
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new paper into the citation network. We use DRp and DRs to express the rank change for

PageRank and SPRank where DRp ¼ RpðN0Þ � RpðNhÞ and DRs ¼ RsðN0Þ � RsðNhÞ.
Naturally, smaller rank change indicates higher robustness against manipulations. We

study the robustness of the Degree rank, PageRank and SPRank with the average rank

change hDRi in Fig. 6. The results show that the Degree rank is the most sensitive to the

manipulation and the SPRank is the best in resisting such manipulation among the three

methods under different h.

Discussion and future work

Objectively ranking the quality of scientific publication is a long-standing challenge in

scientometrics. Much effort has been made in this direction. Though degree is nowadays

widely used to approximate the quality of papers, its result is not fair because it disregards

which papers cite the paper we want to rank. The PageRank now is commonly considered

as a better metric than degree, as it takes into the global information of the network when

ranking nodes. However, this method is sensitive to malicious manipulation as in each

iteration step each paper aggregates the score of all its downstream nodes. In this paper, we

propose a new iterative ranking algorithm which highlights the contribution of the links

connecting similar nodes. We find that the new method can not only significantly improve

the robustness of the resultant ranking, but also have outstanding effectiveness with respect

to identifying the influential papers and predicting the future citation growth.

One important property for the SPRank is that the total resource in the iteration is not

constant. This feature actually helps further enhance the robustness of the method. For

instance, in a network with many spurious publications aiming at pushing up the ranking of

some particular papers, the SPRank will suppress the influence of these spurious publi-

cations by diminishing their resource in the network. In the literature, it has been pointed

out that the main difference between spurious connections and ordinary connections in a

complex network is whether the link connects two topological similar nodes (Guimerà and

Sales-Pardo 2009). As a typical type of complex network, citation networks may also have

some spurious publications which randomly cite other papers or deliberately cite certain

papers to push up their citations. In either case, the topological similarity between the

spurious papers and their cited papers will be low (usually much lower than the topological

similarity between the ordinary papers and their cited papers). As SPRank aims to suppress

the score passed from the dissimilar downstream nodes, it suppresses the influence of the

spurious publications but not the ordinary publications. However, if the total resource is

constant, the spurious publications can still mess up the general ranking of the papers

because their resource will be fully aggregated by some of the upstream nodes anyway and

finally propagate in the network.

There are many extensions that could be made. Though the method in this paper can

more accurately predict papers future degree than PageRank, the prediction for small or

zero degree nodes is still not satisfactory. To solve this problem, one may have to combine

the citation network with the scientific collaboration network. In this sense, a ranking

algorithm that is suitable for multiplex network is needed. A well-designed algorithm for

this kind of network may effectively solve the cold-start problem in prediction. Moreover,

the current algorithm disregards the time information in the citation network. We believe

that adding the time dimension to the iteration ranking algorithm will improve their per-

formance in an evolutionary way.
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