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a b s t r a c t

Brain–computer interfaces (BCIs), which control external equipment using cerebral activity, have
received considerable attention recently. Translating brain activities measured by electroencephalogra-
phy (EEG) into correct control commands is a critical problem in this field. Most existing EEG decoding
methods separate feature extraction from classification and thus are not robust across different BCI
users. In this paper, we propose to learn subject-specific features jointly with the classification rule.
We develop a deep convolutional network (ConvNet) to decode EEG signals end-to-end by stacking
time–frequency transformation, spatial filtering, and classification together. Our proposed ConvNet
implements a joint space–time–frequency feature extraction scheme for EEG decoding. Morlet wavelet-
like kernels used in our network significantly reduce the number of parameters compared with
classical convolutional kernels and endow the features learned at the corresponding layer with a clear
interpretation, i.e. spectral amplitude. We further utilize subject-to-subject weight transfer, which uses
parameters of the networks trained for existing subjects to initialize the network for a new subject, to
solve the dilemma between a large number of demanded data for training deep ConvNets and small
labeled data collected in BCIs. The proposed approach is evaluated on three public data sets, obtaining
superior classification performance compared with the state-of-the-art methods.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Brain Computer Interfaces (BCIs) utilize brain signals to control
external devices, providing an alternative pathway for human
brain to communicate with the outside world. It is widely used for
stroke rehabilitation (Meng, Lu, Man, Ma, & Gao, 2015) and other
areas. Among many neuroimaging methods to capture the brain
activities, electroencephalography (EEG) is by far the most widely
used one, owing to its high temporal resolution, high portability,
low cost, and few risks to the users (Nicolas-Alonso & Gomez-Gil,
2012). In the research field of EEG-based BCI, the core problem
is how to decode EEG signals into correct instructions effectively,
and is still an ongoing research question.

One type of frequently used methods to decode EEG sig-
nals is to extract time–frequency features (e.g. power spectral)
through time–frequency transformation (e.g. wavelet transfor-
mation, Adeli, Zhou, & Dadmehr, 2003) and input the extracted
features into a classifier (e.g. support vector machine, Kousarrizi,
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Ghanbari, Teshnehlab, Shorehdeli, & Gharaviri, 2009) to perform
the final decoding. This type of methods only takes advantage of
temporal and spectral information in EEG signals, ignoring the
spatial information.

Another popular method is termed as filter bank common
spatial pattern (FBCSP, Kai, Zheng, Zhang, & Guan, 2008), reach-
ing great performance in multiple EEG signals decoding. FBCSP
extracts features for each of frequency bands based on the spatial
filtering method, but ignores correlations among different fre-
quencies. Then Aghaei, Mahanta, and Plataniotis (2016) propose
a separable common spatial–spectral patterns (SCSSP) method,
which uses spectral power in multiple frequency bands and the
spatial features of EEG signals. The performance of SCSSP may
outperform the FBCSP if enough training data are provided. More
importantly, the SCSSP requires significantly lower computations
than the FBCSP. The work in Molina, Ebrahimi, and Vesin (2003)
also develops a joint space–time–frequency method, which spa-
tially decorrelates multivariate signals into univariate signals and
then uses the quadratic transformation to represent each univari-
ate representative data. This method obtains good classification
performance for three-class BCI tasks. Therefore, jointly consider-
ing time, frequency, and space may provide better EEG decoding
performance.
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Above EEG decoding methods separate feature extraction from
classification. The features are separately and manually designed
according to experience. They are good for understanding the cor-
responding task but may not be optimal for classification. More
importantly, manually designed features are not robust across
subjects. For example, imagination of hand movement leads to
event-related desynchronization (ERD) at µ rhythm, i.e. 8–12 Hz.
When one particular subject may slightly shift ERD at a lower
frequency, methods developed based on ERD at 8–12 Hz do not
work well for this subject. Manually tuning the frequency range
for the subject may solve the problem, but it is time-consuming.

Deep learning methods improve traditional signal process-
ing methods by automatically learning subject-specific features
guided by classification tasks. The method can be trained end-
to-end, that is feeding raw EEG signals into the network could
obtain the predicted label corresponding to the input in the
end. Schirrmeister et al. (2017) build different architectures of
convolutional neural networks (ConvNets) according to recent
advances of the deep learning such as dropout. Disadvantages of
ConvNets include that they are difficult to interpret, involve a
large number of hyperparameters to learn, and require a large
amount of training data. Although Schirrmeister et al. (2017)
offset the first disadvantage by proposing a novel method to visu-
alize extracted features, ConvNets still require to learn hundreds
of parameters based on large training data sets. Our work not only
makes the ConvNet more easy to interpret, but also solves the
latter two problems.

In this paper, we stack time–frequency transformation,
spatial filtering, and classification as a multiple layered neural
network, implementing a joint space–time–frequency feature
learning guided by classification performance. The method we
propose is a deep convolutional network, termed as wavelet–
spatial filters ConvNet (WaSF ConvNet). There are two convolu-
tional layers in our network. The first convolution is designed to
perform time–frequency transformation using adaptive wavelet
kernels. The second convolution is designed to perform spatial
filtering. Thus, our network is able to learn joint space–time–
frequency features from the data and features in which frequency
band useful for task-specific classification can be directly read
from the first convolutional kernel. The proposed method com-
petes closely with and even outperforms the state-of-the-art
method on three public data sets.

Our main contributions are summarized as follows.

• We directly take spectral power modulations of EEG signals
into consideration by using wavelet kernels. The wavelet
central frequency corresponds to the used frequency of EEG
signals for the task.

• We significantly reduce the number of hyperparameters
in the learning process. For example, each wavelet kernel
with 25 size only involves 2 learning parameters, while
the similar kernel in Schirrmeister et al. (2017) requires 25
parameters.

• We propose a subject-to-subject transfer strategy to solve
the overfitting problem caused by small training samples in
deep learning algorithms. In other words, training samples
required for the WaSF ConvNet may be in a small amount by
using the proposed transfer strategy. For the BCIC IV 2a data
set, the size of training data is decreased to 62% in average
and 80% at least.

The rest of this paper is organized as follows. Related work
is introduced in Section 2. The network architecture, network
training strategies, and transfer learning strategy are described in
Section 3. Validation of our network on three data sets from BCI
competition IV is given in Section 4. Conclusion and main findings
are provided in Section 5.

2. Related work

EEG decoding is one core issue in the EEG-based BCI sys-
tems. Existing approaches for EEG classification can be grouped
into three categories: traditional signal processing approaches
(Blankertz, Tomioka, Lemm, Kawanabe, & Muller, 2007), deep
learning methods (Ma et al., 2016; Schirrmeister et al., 2017), and
Riemannian geometry based approaches (Congedo, Barachant,
& Bhatia, 2017). The Riemannian geometry based approaches
represent EEG signals as covariance matrices, which live in a
curved Riemannian space, and then perform classification in the
Riemannian space. This type of approaches is not directly related
to this paper. We only briefly mention it. If readers are interested
in this type of approaches, please refer to Barachant, Bonnet,
Congedo, and Jutten (2012), Congedo et al. (2017) and Yger, Berar,
and Lotte (2017).

The most frequently used methods for EEG decoding in BCI
systems are the traditional signal processing methods, which
have been developed for a long time and thus have solid the-
oretical and empirical foundation. This kind of methods takes
advantage of findings in brain science, i.e. timing, frequency and
brain region characterizing an EEG signal triggered by a particular
task, and manually designs features accordingly. The extracted
features are then input to a separate classifier to perform the final
decoding.

Many works utilize time–frequency transformation, e.g.
wavelet transformation (Adeli et al., 2003), wavelet packet (Yen
& Lin, 2000), and dual-tree complex wavelet transform (DTCWT,
Kingsbury, 1998), to transform EEG signals from time domain
to time–frequency domain and then extract features, e.g. en-
ergy, power spectral, and entropy (Meng et al., 2015), in the
time–frequency domain. The band powers combining with the
statistical features of wavelet coefficients are extracted from the
wavelet transformed EEG signals to decode left–right hand motor
imagery in work (Hong, Qin, Bai, Zhang, & Cheng, 2015).

As the utilization of features extracted in the time–frequency
domain does not provide sufficient high classification accuracy
for some BCI systems, a spatial filtering method called common
spatial patterns (CSP) is proposed to extract discriminative fea-
tures (Blankertz et al., 2007). A simple description of the CSP
method is that it maximizes the variance for one class, while
minimizes the variance for the other class (Blankertz et al., 2007).
Subsequently, many approaches based CSP are developed. A suc-
cessful example is filter bank common spatial patterns (FBCSP)
proposed by Kai et al. (2008). This method solves the limita-
tion of CSP, where a frequency band of the EEG needs to be
determined manually before CSP operates on. The FBCSP method
first uses bandpass-filters to make the EEG measurements into
multiple frequency bands, then extracts CSP features for each
of these bands, and finally automatically selects discriminative
pairs of frequency bands and corresponding CSP features using
a feature selection algorithm. Even though the FBCSP method
obtains relatively high classification performance, spatial filtering
methods usually treat each frequency band independently, ignor-
ing correlations between features obtained from different EEG
rhythms, leading redundancy in extracted features and the high
requirement of the computational power (Aghaei et al., 2016;
Ang, Chin, Zhang, & Guan, 2012). Separable common spatial–
spectral pattern (SCSSP, Aghaei et al., 2016), a more efficient
method, is proposed to significantly reduce computational cost
compared with FBCSP. The SCSSP method processes EEG signals
in both spatial and spectral domains by using a heteroscedastic
matrix-variate Gaussian model.

Other methods extracting time, spectral and spatial features
together are also proposed for EEG classification. The work (Fer-
rante, Gavriel, & Faisal, 2015) combines a Morlet wavelet trans-
formation and CSP for feature extraction of EEG signals, achieving
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better classification performance than other methods only using
wavelet transformation. A joint time–frequency–space classifica-
tion method is developed to classify EEG signals, based on joint
time–frequency–space decorrelation (Molina et al., 2003). The
method first decomposes the multivariate signals coming from
several electrodes into several univariate representative signals,
then obtains quadratic time–frequency representation for each
univariate representative signal, and finally performs multivariate
classification through an ensemble of univariate signal classifi-
cation. This method achieves good classification performance for
simple BCI tasks.

Traditional signal processing methods rely on manually de-
signed features guided by experience and thus are not robust
across different subjects. Significant progress is made in computer
vision and natural language processing with the development of
deep learning. This biologically-inspired deep learning method
learns subject-specific features guided by the classification task
instead of the prior knowledge. There exists research work apply-
ing deep learning for EEG decoding end-to-end (Kumar, Sharma,
Mamun, & Tsunoda, 2017; Lee & Kwon, 2016; Schirrmeister et al.,
2017; Tang, Li, & Sun, 2017). Kumar et al. (2017) propose a CSP-
DNN method, which extracts CSP features first and then feeds
features to a deep neural network (DNN) for classification. The
feature extraction and classification are further combined into
a single process. For example, Tang et al. (2017) train a con-
volutional neural network with five layers end-to-end, but the
method has to initially select the time period and the frequency
band based on the ERD/ERS phenomenon. In this aspect, our
method only requires little preprocessing. Besides, Schirrmeis-
ter et al. (2017) study different architectures of deep convo-
lutional neural networks (ConvNets) and especially propose a
novel method to visualize the learned features. The most im-
portant conclusion in Schirrmeister et al. (2017) is the ConvNets
indeed use spectral amplitude in the alpha, beta, and gamma
frequency bands. Under this condition, we design convolutional
kernels according to the wavelet transformation and directly
extract features in time–frequency domains. Then the spectral
power modulations in which frequency could be quickly read
from parameters of the convolutional layer.

3. The proposed method

The decoding of EEG signals can be formulated as a supervised
classification problem. Our goal is to develop a methodology
that is able to classify EEG signals with high accuracy, high ro-
bustness and small training data set. All event-related potentials
are limited in duration and in frequency. And the majority of
events activate distinct brain regions (Sanei & Chambers, 2007).
Therefore, efficient classification of EEG signals exploits features
incorporating the space, time and frequency dimensions of the
EEG data. This kind of joint space–time–frequency classification of
EEG data has been studied in BCIs (Molina et al., 2003). However,
existing methods separate feature extraction and classification
into two independent procedures. They manually design subject-
specific features first and then classify the EEG data based on the
extracted features. The separation of feature extraction and clas-
sification may lead to inferior classification performance. We thus
present a novel EEG classification method based on convolutional
neural networks, merging the feature extraction and classifica-
tion into a single process. The proposed method also exploits
joint space–time–frequency features of EEG data using trainable
wavelet based time–frequency filters and spatial filters. The pro-
posed method is called wavelet–spatial filters ConvNet (WaSF
ConvNet). In this section, we will give a detailed description of
our proposed network.

3.1. Problem definition

Suppose that we are given one EEG data set for each subject
(denoted by s). Each data set contains a number of labeled trials.
Each trial is a time-segment of the originally continued EEG
recording with each belonging to one of several classes. The data
sets we are given can be denoted by Ds

= {(X s
1, y

s
1), (X

s
2, y

s
2), . . . ,

(X s
Ns

, ysNs
)}, where Ns represents the number of recorded trials for

subject s. Here, X s
i ∈ RE×T is the input matrix with E denoting the

number of electrodes and T representing the number of sampled
time steps in each trial, while ysi is the class label of the ith
trial for subject s. It takes values from a set of C class labels L
(L = {l1, l2, . . . , lC }) corresponding to a set of brain activities. For
instance, for the BCI competition IV 2a data sets of 4 classes (C =

4), ysi can take class l1, l2, l3, or l4, meaning that during the ith trial,
the subject s performed either imagined left-hand movement,
right-hand movement, foot movement, or tongue movement.

The task is to find a decoder f trained on existing trials such
that it can assign new unseen trials correct class labels. In this
paper, we consider the parametric classifier f (Xi; θ ) : RE×T

→ L,
parameterized by θ , which assigns label yj to the trial Xj, i.e. yj =

f (Xj; θ ). The decoder f (Xj; θ ) of EEG signals jointly represents two
parts which are separated in the traditional wavelet transform: (i)
extracting a feature representation φ(Xj; θφ) with parameter θφ ,
which could be learned from the data; (ii) utilizing a classifier g
parameterized by θg trained using previous features, specifically,
f (Xj; θ ) = g(φ(Xj; θφ), θg ).

3.2. The proposed network architecture

Different brain activities may trigger different brain regions to
emit potentials in different timings and different frequencies. The
WaSF ConvNet thus involves wavelet kernels and spatial filters,
as shown in Fig. 1. The network consists of 5 layers: two specific
convolutional layers followed by a pooling layer, then a dropout
layer added before the final dense output layer.

3.2.1. Convolutional layers
The network contains two convolutional layers, performing

time–frequency convolution and spatial convolution respectively.
The first convolutional layer contains time–frequency filters de-
signed by real-valued wavelets motivated by Morlet wavelet. In
this paper, we use 25 time–frequency filters, corresponding to
25 time–frequency convolutional units. Each unit will convo-
lute with inputs by using the same kernel for all electrodes E.
The wavelet kernels (convolutional kernels) shown in Fig. 2 are
formulated as follows:

wη(t) = e−
aη2t2

2 cos(2πbηt) (1)

where η = 1, . . . , 25 and t denotes the sampling time steps.
aη and bη are two free parameters. 1/aη is the bandwidth of
the Gaussian, controlling the active time window of the wavelet
kernel. bη represents the wavelet central frequency. In this paper,
the width of each wavelet is set to be 0.36 s (−0.18 s, 0.18 s)
with 25 sampling time points.1 The inputs are convoluted with
each kernel and then fed to linear units, i.e. f (x) = x, where
x is the convoluted results of the inputs with kernels. In total,
this convolutional layer needs to learn 25 × 2 free parameters,
which are significantly smaller than a traditional convolutional
layer with 25(units)×25(width)×1(height) parameters for all con-
volutional units. Another advantage of our filters over traditional
convolutional filters is that our filters also extract the frequency

1 Other choices were also tried. This one delivers good performance across
all data sets.
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Fig. 1. Architecture. The network contains 5 layers: the time–frequency convo-
lution (25 linear units) along the time dimension of the trial, each unit of which
has the same convolutional kernel for all electrodes; the spatial convolution
(25 eLU units) to collect mutual information among all electrodes; the pooling
layer for coarser representations; the drop out layer to address overfitting; the
dense layer with softmax non-linear activation for classification. Red rectangles
represent kernels of convolutional and pooling layers.

information of the data besides the temporal information. The
convolution process of this layer will change a two-dimensional
EEG signal into a three-dimensional feature map.

The second convolutional layer consists of 25 spatial filters
designed to extract the mutual information among all electrodes.
Each spatial filter is designed by a kernel of size 1 × E to con-
volve with each of the 25 feature maps obtained from the previ-
ous time–frequency convolution, respectively. Thus, in total, we
need to learn 25(time − frequential units) × 25(spatial units) ×

Fig. 2. Kernels of time–frequency convolutional units.

1(width) × E(height) parameters for this layer. Through the con-
volution process of this layer, the three-dimensional feature map
obtained by the previous convolution process is changed into
a two-dimensional representation. The activation functions of
this layer are exponential linear units (eLUs), which are more
robust to changeable inputs and more quickly convergent to the
stable value than other activation functions (Clevert, Unterthiner,
& Hochreiter, 2016):

f (x) =

{
x x ≥ 0

ex − 1 x < 0 (2)

3.2.2. Pooling and dropout layers
After the two convolution layers, a mean pooling layer and a

dropout layer follow. The pooling layer processes a kernel of size
71 × 1 by moving a stride of size 15 × 1 each time. The pooling
layer will create a coarser intermediate feature representation
and make the network more translation invariant.

The dropout layer randomly sets some of the outputs from
the pooling layer to zero in each update. The probability of each
output to be set as zero is 0.75 in this paper. This technique
is used to prevent co-adaption of different units and can be
interpreted as analogous to training an ensemble of networks.

3.2.3. Final layer
The final layer is a dense layer with a full connection between

the input units of this layer and the output units, performing soft-
max regression (multi-class logistic regression). The final layer
contains C output units with feature representation extracted by
previous layers being inputs.

The entire convolution neural network maps input data to
one real number per class, i.e. g(Xi; θ ) : RE×T

→ RC where θ
denotes the collection of all the parameters of the network, E
is the number of electrodes, T represents the number of time
steps, and C denotes the number of possible output labels. To
obtain a classification result, the output is transformed to condi-
tional probabilities of a label lk given the input Xi using softmax
function:

p(lk|g(Xi; θ )) =
egk(Xi;θ )∑C

m=1 egm(Xi;θ )
(3)

The softmax activation produces a conditional distribution over
all possible output classes for each example. The entire network
is trained to assign high probabilities to the correct labels by min-
imizing the sum of losses with respect to each training example:

θ∗
= argmin

θ

N∑
i=1

L(yi, g(Xi; θ )) (4)

where

L(yi, p(lk|g(Xi; θ ))) =

C∑
k=1

− log(p(lk|g(Xi; θ )))δ(yi = lk) (5)
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is the negative log likelihood function, also known as the cross-
entropy loss. Here δ(·) is the indicator function, i.e. δ(true) = 1
and δ(false) = 0.

The final decoding of the EEG signal is to assign the example
the label with maximum conditional probability, i.e.

f (Xi; θ ) = argmax
lk

p(lk|g(Xi; θ )) (6)

3.3. Network training

In order to obtain good generalization capability, we tried
several training tricks popular in deep learning.

3.3.1. Cropped training
One drawback of deep neural networks is that they need a

large number of examples to train the network. However, com-
monly, in BCIs, each subject or user only offers a small number
of trials to train the corresponding EEG decoder. Fortunately,
in each trial, we have recordings that last for several seconds.
Here, instead of using the entire trials as input and per-trial
labels as targets to train the network, we use a cropped training
strategy (Schirrmeister et al., 2017).

A sliding time window of width T ′ time steps obtains multiple
crops within the trial. The first crop starts from the tc second of
the trial. We slide the time window by tc second each time to ob-
tain another crop. All the crops extracted from the corresponding
trial share the label of that trial. The cropped training strategy
utilizes the obtained crops as input and the per-crop labels as
targets to train the network. Crops extracted from the same trial
are thus highly correlated to each other. Instead to minimize
the loss function defined by Eq. (5), we need to minimize the
regularized version defined as follows:

L(yi, p(lk|g(X tc ..tc+T ′

i ; θ ))) =

C∑
k=1

−log(p(lk|g(X tc ...tc+T ′

i ; θ )))δ(yi = lk)+

C∑
k=1

−log(p(lk|g(X tc ...tc+T ′

i ; θ )))p(lk|g(X
tc′ ...tc′+T ′

i ; θ )) (7)

where the cross-entropy of the predictions p(·) of two neighbor-
ing crops, which respectively starts from tc and tc′ within the
EEG signal of the trial denoted by Xi, are added into the loss
function. The regularized loss function gives penalization when
neighboring crops are given different predictions. This will reduce
the differences among features of the neighboring input crops,
forcing the network to focus on features which are stable across
several neighboring input crops.

In the training phase, we collect the first crop of each trial i
to train the network (randomly initialized) by optimizing Eq. (4)
with the loss function defined by Eq. (5). The trained network will
give an intermediate prediction on the first crop of each trial i,
denoted by pµ=1(lk|g(X tc ...tc+T ′

i ; θ )). Then we collect the next crop
of each trial to train the network again. At this time, the network
is initialized with weights learned from the previous crop of each
trial and trained to minimize the regularized losses defined by
Eq. (7). This training procedure is repeated until the last crop,
i.e. Pth crop, of each trial is used to train the network.

The final decoding f (Xi; θ ) of each trial i is calculated by

f (Xi; θ ) = argmax
lk

P∑
µ=1

pµ(lk|g(X
µtc ...µtc+T ′

i ; θ )) (8)

3.3.2. Optimization and early stopping
Mini-batch gradient descent algorithm implemented with

Adam optimizer is used to solve the optimization problem Eq. (4)
with losses defined by Eq. (5) or Eq. (7). The learning rate η

follows exponential decay function:

η(t) = t0 + (t1 − t0) exp (−t/τ ) (9)

where t0 and t1 are the minimal and maximal allowed learning
rates, respectively, and τ is the exponential decay factor. Here we
allow the learning rate η decay from 0.003 to 0.0001 by a decay
factor of 2000.

Early stopping strategy is also used for training. Corresponding
training data set is divided into two folds: one for training and
the other for validation. The optimization procedure is performed
through two stages. At the first stage, we train the WaSF ConvNet
for 100 iterations on the training fold only and test it on the
validation fold. The weights with best validation accuracy are
selected as the initial weights of the network at the second stage.
The network is then trained on the whole training set (including
both training and validation folds) until the loss drops to the same
value as the training loss associated with best validation accuracy
at the first stage.

3.3.3. Weight transfer
In the application of BCIs, collecting a large number of qualita-

tive training examples for each BCI user is generally impractical.
The main reason is that the training (calibration) session is so
boring that the user will lose attention and produce an inaccurate
cerebral response to the required action (Tu & Sun, 2012). But a
short calibration session means only a few training examples of
the user are available, which may lead classifiers, especially deep
neural networks, to suboptimal or overfitting. Thus, how to solve
this dilemma is a hot topic in BCI researches.

Besides the cropped training strategy, we also consider the
transfer learning (Pan & Yang, 2010) to solve the problem of
training deep neural networks with small labeled data sets. The
transfer technique used in this paper is called subject trans-
fer (Samek, Meinecke, & Muller, 2013), which is to use samples
collected from other subjects (source subjects) to assist the sub-
ject whose brain signals will be classified in the test session
(target subject). This naturally leads to a critical problem of how
to use samples from source subjects to aid the target subject
to train his specific model. Pretraining is utilized. We borrow
parameters of several layers in source networks (networks that
have been successfully trained using samples of source subjects)
to initialize the target network (network that will be trained on
the target subject for solving similar tasks).

The realization of the parameter transfer is divided into four
stages. The first stage is to train a WasSF ConvNet per source
subject using samples of the corresponding source subject. At this
step, cropped training and early stopping strategies are used. The
second stage is to initialize the WasSF ConvNet for the target
subject. Assume there exist M source subjects ws, the nth layer of
the target network (denoted by wt

n) is initialized by the weighed
average of nth layers of M source networks:

wt
n =

M∑
m=1

ρmws
mn (10)

where ws
mn denotes the connecting weights of the nth layer to the

next layer in the source network m. Here
∑M

m=1 ρm = 1, where
ρm represents the strength of the source subject network m
contributing to the initialization of the target network. The third
stage is to finetune the target ConvNet initialized above using
the training samples of the target subject, calculating the optimal
feature extractor and classifier for the target subject. The final
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stage is to test the finetuned target network using the samples of
the target subject collected during the test session. The parameter
transfer is supposed to improve the classification performance on
the small training data sets and boost the convergence speed of
the deep network.

4. Experiments

In this section, we evaluated our proposed EEG decoder im-
plemented by the deep convolution network on three public
data sets for the motor imagery (MI) paradigm. Weights of the
time–frequency convolution a and b are randomly initialized by
uniform distribution in U(1, 10) and U(3, 30), respectively.

4.1. Data sets

BCIC IV 2a. BCI competition IV data set 2a (Brunner, Leeb, Muller-
Putz, Schlogl, & Pfurtscheller, 2008) consists of EEG signals from
9 healthy subjects who were performing four different motor
imagery tasks, i.e. imagination of the movement of the left hand,
right hand, both feet and tongue. The signals were recorded by
placing 22 electrodes distributed over sensorimotor area of the
subject at a sampling rate of 250 Hz. The signals were bandpass-
filtered between 0.5 Hz and 100 Hz. For each subject, two sessions
were recorded on two different days, each containing 288 trials
with 72 trials per class. At each trial, a cue was given in the
form of an arrow pointing either to the left, right, down or up,
corresponding to one of the four classes, to prompt the subject to
perform the corresponding motor imagery task. Each trial lasted
4 s from the presence of cue till the end of motor imagery task.
The first 3 seconds’ data was extracted for further processing
in this paper. In other words, in the following experiments, our
WaSF ConvNet was trained using 288 trials. Each trial is a 22
dimensional time series containing 750 sampling points. The
trained network was then tested by the remaining 288 trials.

BCIC IV 2b. BCI competition IV 2b (Leeb, Brunner, Muller-Putz,
Schlogl, & Pfurtscheller, 2008) contains EEG signals from 9 sub-
jects. The brain activities of the subject during motor imagery of
either the left hand movement or the right hand movement were
recorded using 3 electrodes at a sampling rate of 250 Hz. The
signals were bandpass-filtered between 0.5 Hz and 100 Hz. For
each subject, 5 sessions were recorded in five different days. For
the first two sessions, 120 trials each were recorded, with 60 trials
each class. At each trial, the subject performed the imagination of
the cue-indicated hand movement over a period of 4 s, starting
from the presence of the cue, without feedback. For the other
three sessions, 160 trials per session were recorded with 80 trials
each class. At each trial this time, the subject performed the
imagination of the corresponding hand movement over a period
of 4.5 s, starting from the presence of the cue, with online smiley
feedback. Again, the time interval of the processed data was
restricted to the time segment comprised between 0 s and 3 s
starting from the cue. The first three sessions, containing 400
trials in total, were used as training sets, while the remaining two
sessions, containing 320 trials, were used for test. Each trial is a
3 dimensional time series containing 750 sampling points.

Upper limb movement. This data set (Ofner, Schwarz, Pereira,
Muller-Putz, & Zhang, 2017) consists of EEG data from 15 healthy
subjects. Each subject was measured for 2 sessions on different
days, performing the motor execution (ME) and the motor imagi-
nation (MI) tasks respectively. The signals were recorded using 61
electrodes, and were sampled with 512 Hz and bandpass-filtered
between 0.01 Hz to 200 Hz. In this paper, only MI data is used
to verify our proposed model. Each subject was cued to imagine
either of the six movement types, including elbow flexion or

Table 1
Comparison of our method with baseline method in terms of κ value for BCIC
IV 2a data set.
Subject WaSF ConvNet (no weight transfer) Baseline

s1 0.62 ± 0.006 0.41
s2 0.32 ± 0.010 0.09
s3 0.71 ± 0.026 0.61
s4 0.40 ± 0.028 0.29
s5 0.59 ± 0.009 0.11
s6 0.33 ± 0.009 0.27
s7 0.66 ± 0.013 0.43
s8 0.72 ± 0.009 0.44
s9 0.69 ± 0.005 0.63
mean 0.56 ± 0.013 0.36

extension, forearm supination or pronation, hand open or close.
For each subject, 360 trials (60 trials per class) were recorded. The
imagination of each movement lasted for 3 s, starting from the
presence of the cue. The data of the first 1.5 s starting from the
cue was used for the classification, since the work (Ofner et al.,
2017) indicated that the MI classification becomes significant at
t < 0.81 s. Thus the experiments were performed using the
360 trials, with each trial being a 61 dimensional time series
containing 768 sampling points.

4.2. Classification performance

Minimal pre-processing were performed on the data sets so
that the convolution neural network can learn any transforma-
tions itself. The raw input signals, on both BCIC IV 2a and 2b data
sets, were only bandpass-filtered with a third-order Butterworth
filter using cutoff frequencies of 0.5 Hz and 38 Hz. The signals on
the upper limb movement data set were also bandpass-filtered
but using cut frequencies of 0.01 Hz and 38 Hz.

The three data sets only contain a small amount of training
trials. However, each trial contains a large number of sampling
points. Thus, many training examples can be obtained through
cropping strategy. For both BCIC IV 2a and 2b data sets, we set
tc = 0.25 s (signals were considered as starting at 0 s), meaning
three crops (P = 3) were extracted per input. For the upper limb
movement data set, tc was set as 0.13 s2 and three consecutive
crops (P = 3) were also obtained by sliding the time window
0.13 s each time within the input trial.

In this paper, kappa value κ = (Pa − Pc)/(1 − Pc) were
used as one of the evaluation metrics to assess the performance
of the classifiers, where Pa is the proportion of the successful
classification (identical to accuracy) and Pc is the proportion of
random classification.

4.2.1. Comparison with the baseline method
We compared our WaSF ConvNet (without weight transfer)

with the baseline method (Ref. Appendix). For the BCIC IV 2a and
2b data sets, training and test folds were provided separately.
However, for the upper limb movement data set, training fold
and test fold were not separated and thus we used a 10-fold cross
validation to estimate the generalization performance.

For the BCIC IV 2a data set, as shown in Table 1, the per-
formance of our proposed model is significantly different from
the baseline method (P = 0.008, Wilcoxon signed-rank test).
The kappa value of our method for all the 9 subjects is higher
than that of the baseline method (increased about 55.6% in mean
kappa). The maximal kappa discrepancy between our method and

2 tc = 0.25 s was also tried, but performs inferior average accuracy than
0.13 s does. Ofner et al. (2017) indicates that the MI classification becomes
significant at t < 0.81 s.
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Table 2
Comparison of our method with baseline method in terms of κ value for BCIC
IV 2b data set.
Subject WaSF ConvNet (no weight transfer) Baseline

s1 0.47 ± 0.026 0.43
s2 0.27 ± 0.031 0.16
s3 0.72 ± 0.015 0.17
s4 0.95 ± 0.008 0.94
s5 0.73 ± 0.027 0.65
s6 0.45 ± 0.026 0.65
s7 0.77 ± 0.012 0.46
s8 0.86 ± 0.014 0.84
s9 0.62 ± 0.017 0.64
mean 0.65 ± 0.020 0.55

Table 3
Comparison of our method with baseline method in terms of κ value for the
upper limb movement data set.
Subject WaSF ConvNet (no weight transfer) Baseline

s1 0.17 ± 0.038 0.06 ± 0.058
s2 0.17 ± 0.044 0.10 ± 0.079
s3 0.17 ± 0.039 0.09 ± 0.072
s4 0.17 ± 0.054 0.08 ± 0.072
s5 0.16 ± 0.028 0.07 ± 0.055
s6 0.16 ± 0.038 0.03 ± 0.084
s7 0.17 ± 0.032 −0.00 ± 0.051
s8 0.17 ± 0.036 0.10 ± 0.064
s9 0.17 ± 0.034 0.02 ± 0.071
s10 0.18 ± 0.055 0.01 ± 0.066
s11 0.18 ± 0.042 0.04 ± 0.026
s12 0.16 ± 0.024 0.02 ± 0.055
s13 0.16 ± 0.028 0.02 ± 0.050
s14 0.17 ± 0.043 0.01 ± 0.077
s15 0.17 ± 0.040 0.08 ± 0.065
mean 0.17 ± 0.038 0.05 ± 0.063

the baseline method is achieved for subject 5, with our method
reaching as high as 0.59, 4.4 times higher than that of the baseline
method.

For the BCIC IV 2b data set, as shown in Table 2, our method
is not statistically different from the baseline method (P = 0.123,
Wilcoxon signed-rank test). Our method beats the baseline over
7 out of 9 subjects and obtains significantly higher mean kappa
value over the 9 subjects by 18.2% than that of the baseline
method.

The upper limb movement data set is used to test the perfor-
mance of our model on the multiclass classification of imagery
movements. Table 3 shows the results. The mean κ value of
our method is 0.17, significantly (2.4 times) higher than that of
the baseline method. Note that the baseline method obtained
κ values close to 0. For some subjects, the kappa values were
even slightly negative, e.g. −0.0033 mean κ for subject 7. This
implies the performance of the baseline method on the upper
limb movement data set is more or less a random guess. Instead,
the performance of our method on all subjects reached positive
kappa, indicating the efficiency of our model. The performance
of our model improved significantly comparing with the base-
line method; nevertheless, it was still unsatisfying. One possible
reason is that the classification task of this data set is rather diffi-
cult. Six types of motor imagery movements are involved in this
data set. Among these six types of motor imagery movements,
each two movements, i.e. elbow flexion and extension, forearm
supination and pronation, and hand open and close, involve the
same joints (i.e. muscle groups), making the classification task
even more difficult (Ofner et al., 2017). Moreover, EEG signals of
this data set contain 61 channels, much greater than the other
two data sets. Thus the performance of our model on this data
set is much worse than its performance on the other two data
sets.

The experimental results show that out WaSF ConvNet sig-
nificantly outperforms the baseline method. Moreover, the per-
formance of our WaSF ConvNet is rather stable, i.e. the standard
derivation is very small. Therefore the combination of time–
frequency transformation, spatial filtering, and classification
through deep convolutional neural network is a successful design
for EEG signal decoding.

4.2.2. Feature analysis
The idea of deep ConvNets is usually attacked on their in-

terpretability. However, our proposed deep ConvNet is different.
The first valid layer of our ConvNet is designed to perform a
time–frequency transformation while the second valid layer is
designed to extract spatial information in the EEG signals. Con-
sequently, our ConvNet implements an automatic joint space–
time–frequency transformation to extract the features of EEG
signals.

In this part, we delineate the extracted features of our pro-
posed WaSF ConvNet. The EEG signals of subject 8 on BCIC IV
2a were used. No pre-processing and weight transferring were
performed on the signals. We prepared the WaSF ConvNet as
follows. We first divided the initialization range of the central
frequencies bη of the time–frequency convolutional kernels given
by Eq. (1) into three bands, namely α-band (7–13 Hz), β-band
(13–31 Hz), and γ -band (71–91 Hz). We then randomly divided
the 25 time–frequency convolution units into three groups and
associated each group with a frequency band by initializing the
units of this group with random numbers within the correspond-
ing frequency band. In other words, 9 units were initialized by
random values within α-band (7–13 Hz), 8 units within β-band
(13–31 Hz), while the rest 8 units within γ -band (71–91 Hz).
The time–frequency convolution units will collect spectral ampli-
tudes for different frequencies. Finally the ConvNet was trained
using cropped training and early stopping strategies described
in Section 3.3. The parameters aη and bη would be updated
accordingly.

First, features extracted at the time–frequency convolutional
layer are analyzed. We computed mean output of each time–
frequency convolution unit across all trials and reassociated each
unit with corresponding bands, according to the updated bη . The
result is given by Fig. 3(a). We can see that the grouping structure
of time–frequency convolutional units is reserved in the success-
fully trained network. We then averaged the mean outputs of
units within each band to obtain Fig. 3(b). From Fig. 3(a) and (b),
we can clearly see that the firing rate of units in α-band and high
γ -band is significantly higher than that in β-band. Finally, we
separated the average output of units within each band according
to their tasks (Fig. 3(c)). To achieve this, we grouped the trials
according to their tasks, computed mean output of each unit over
trials within the corresponding task group, and then averaged
the mean outputs of units within each band. Fig. 3(c) indicates
the outputs associated with α-band and high γ -band contribute
greatly to the motor imagery decoding, confirming the findings
in Schirrmeister et al. (2017).

We then analyze the features extracted at the spatial con-
volutional layer. For each trial, we averaged the output of each
spatial convolution unit over time and selected three important
units, which are associated with highest mean outputs. Then we
counted the frequency of these selected units for trials within
each class. Five most frequently selected units per class were
chosen for visualization, given by Fig. 3(d). From Fig. 3(d), we can
see that 6 out of 25 units were frequently activated for the four
types of motor tasks. Among the 6 frequently activated units, the
four types of motor tasks activated 4 units simultaneously but
with different activation orders, indicating varied firing rates of
units encode different types of movement imagination.
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Fig. 3. Feature analysis on samples of subject 8 on BCIC IV 2a data set. (a) Mean output per time–frequency convolution unit across all trials is associated with
either of α, β and high γ frequencies, according to the updated center frequency of this unit; (b) Average the mean outputs over all units within each band are
plotted. The firing rate of units in α and γ rhythm is significantly higher than that in β; (c) separates the average outputs of units within each band according to
different tasks. The left hand wins the highest correlation with frequency bands; (d) visualizes five most frequently selected units in spatial convolution layer for
trials within each class. Varied firing rates of spatial convolution units encode different types of movement imagination; (e–h) show scalp maps, spatially mapping
the learned features in the α frequency band for four classification tasks. Colorful circles denote the active electrodes for the corresponding classification task, in
which dark red circles show the critical ones.

We further analyze the spatial distribution of class-related
band power features by computing differences of synaptic con-
nections from time–frequency convolutional units to spatial con-
volutional units between the trained and untrained models. For
each task, the temporal units associated with α-band and five
most frequently activated spatial units were selected for visu-
alization. Each time–frequency convolutional unit is connected
to one spatial convolutional unit through a convolutional kernel
with size 1 × E. Each parameter within the kernel corresponds
to one EEG electrode. The positive weight (kernel parameters)
change of each connection comparing the trained network with
untrained network indicates the corresponding electrode is class-
related for the corresponding band. For each connection between
the selected spatial unit and one temporal unit, we collected three
most important electrodes (with the largest positive changes).
Then we counted the frequency of the selected electrodes for all
the connections from the temporal units within α-band to this
spatial unit. For each spatial unit, we collected three most fre-
quently appeared electrodes. Important class-related electrodes
corresponding to all spatial units were marked in the scalp map
and three most important electrodes were marked in dark red,
given by Fig. 3(e–h), respectively.

The results given by Fig. 3(e–h) suggest that the four types
of mental tasks activate different areas of the brain to emit
α rhythm. The imagination of the left hand movement mainly
activated the right part of the primary motor cortex around
C4 (Fig. 3(e)), while the right hand imagery movement mainly
activated the left part (Fig. 3(f)). The feet imagery movement
activated the central primary motor cortex, which is specific
around Cz (Fig. 3(d)). The area below Cz is called the primary
somatosensory cortex, representing the brain activity triggered
by the imagination of the tongue movement. In general, our
network can extract α rhythm at channels that directly related
to the task performed by the subject.

4.2.3. Weight transfer
We evaluated the weight transfer learning strategy presented

in Section 3.3.3 under different choices, trying to identify an
optimal choice that can provide positive transfer. For a data

set, the subject to be tested is the target subject. Only training
trials of this subject were involved in the learning process of
the network. The test trials were reserved for test only. Other
subjects within this data set are source subjects. Both training
trials and test trials can be used to assist the learning process of
the target network. The performance of the target network will
be compared with that of the network without weight transfer
reported in Section 4.2.1.

Choice of the transferred layers on the BCIC IV 2a. There are three
layers in the WaSF ConvNet that can be transferred. To identify
which layers to transfer, we performed the following experiments
on BCIC IV 2a data set. Each subject was treated as the target sub-
ject except subject 8, using subject 8 as the source subject3 since
the WaSF ConvNet on subject 8 obtains the best performance
(see Table 1). Reusing the weights of the best source network is
supposed to improve the performance of the target subject.

Table 4 gives the experimental results of different transfer-
ring choices. That is to initialize the layer (layers) of the target
network with the transferred layer (layers) of the source sub-
ject, while keeping other layers of the target network randomly
initialized. After initialization, the target network was finetuned
on the training trials only and tested on the separate test trials
of the corresponding subject. From Table 4, we can see that
transferring time–frequency convolution layer and spatial con-
volution layer at the same time improves 2.7% kappa value over
the WaSF ConvNet without transfer, significantly more than other
choices. This confirms that the combination of temporal, spectral
and spatial features leads to improved classification performance
of EEG signals. Transferring weights from the time–frequency
convolution layer and spatial convolution layer was selected for
further study.

Choice of the strengths of source subjects on the BCIC IV 2a. Source
subjects contribute to the initialization of the target network
based on specific strengths (ρ in Eq. (10)). We explored two

3 Transferring weights from the next best performance subjects (i.e. subject
3 or 9) does not reach superior performance to subject 8.
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Table 4
Transferring the source network with different layers on the BCIC IV 2a data set.
Subject No Transfer Time–frequency layer Spatial layer Dense layer Time–frequency& spatial layers

κ acc κ acc κ acc κ acc κ acc

s1 0.62 0.71 0.62 0.71 0.59 0.69 0.57 0.68 0.61 0.71
s2 0.32 0.49 0.34 0.51 0.31 0.48 0.31 0.49 0.32 0.49
s3 0.71 0.78 0.74 0.81 0.71 0.78 0.68 0.76 0.72 0.79
s4 0.40 0.55 0.40 0.55 0.38 0.54 0.39 0.54 0.48 0.61
s5 0.59 0.69 0.60 0.70 0.57 0.68 0.59 0.69 0.56 0.67
s6 0.33 0.50 0.35 0.51 0.32 0.49 0.35 0.51 0.36 0.52
s7 0.66 0.74 0.66 0.75 0.66 0.74 0.66 0.74 0.68 0.76
s8 0.72 0.79 – – – – – – – –
s9 0.69 0.77 0.67 0.75 0.69 0.77 0.66 0.74 0.71 0.78
mean 0.558 0.668 0.567 0.676 0.550 0.662 0.548 0.660 0.573 0.680

Table 5
Transferring the source network with different strengths on the BCIC IV 2a data
set.
Subject Test trials Validation trials

κ acc κ acc

s1 0.61 0.71 0.63 0.72
s2 0.32 0.49 0.32 0.49
s3 0.72 0.79 0.75 0.82
s4 0.48 0.61 0.44 0.58
s5 0.56 0.67 0.60 0.70
s6 0.36 0.52 0.38 0.54
s7 0.68 0.76 0.69 0.77
s8 0.72 0.79 0.71 0.79
s9 0.71 0.78 0.73 0.80
Mean 0.573 0.680 0.583 0.690

options to obtain the strength for each source subject. Simula-
tions transferred the time–frequency and spatial convolutional
layers of the best source network. For the first option, termed
as ‘‘test trials", we used the kappa values on test trials to find
the best source network as we did in Table 4. For the second
option, termed as ‘‘validation trials", we used the kappa values
on validation set to find the best source network. Table 5 shows
that the use of validation kappa values as strengths obtains bet-
ter performance. One possible reason is that the validation set
contains trials from both training session and test session of the
source subject, providing better overall evaluation of the source
network.

Consequently, in the following experiments, we applied two
rules: (1) transferring the time–frequency and spatial convolution
layers together; (2) obtaining the strength ρ by calculating the
kappa values on the validation set randomly drawn from both
training and test sessions.

Choice of transferring strategies on the BCIC IV 2a. Besides trans-
ferring the parameters of the best source network to the target
network (top1), we also explored other choices, including trans-
ferring the weighted mean parameters of the best three source
networks to the target network (top3), and transferring the mean
(mean) or weighed mean (weighted) parameters of all the source
networks to the target network. Note that the weights are given
by the validation kappa values and properly normalized (divided
by their sum). Table 6 shows the results.

Among all the choices, transferring the best source network,
termed as top1 achieves the largest improvements, obtaining
significantly (P = 0.024, Wilcoxon signed-rank test) better per-
formance than the WaSF ConvNet without weights transfer. By
employing the top1 subject transfer strategy, 8 out of 9 subjects
obtain superior performance to their original methods. The corre-
sponding mean kappa values over all subjects reaches 0.583, 4.5%
higher than the original results.

We also validated the top1 subject transfer on the BCIC IV
2b data set, as shown in Table 7. Results with the weight trans-
fer are not significantly different from the original one (P =

Fig. 4. The minimum amount of demanded training trials on the BCIC IV 2a
data set. (a) When giving different proportion of trials from subject 4 to train
the WaSF ConvNet, the corresponding kappa coefficients are calculated in the
test session. The subject 4 reaches the benchmark (red line), obtained from fully
trained model without the weight transfer, at about 40% point; (b) shows the
minimal training sets of all subjects.

0.433, Wilcoxon signed-rank test). WaSF ConvNet reaches a mean
kappa value of 0.657, slightly greater than the mean value of no
transferring process (0.649). This may be because the amount
of data per class is big enough to train the network, such that
transferring weights from the source to the target does not obtain
good performance on BCIC IV 2b.

All above experiments show that transferring weights of the
time–frequency and spatial convolutional layers of the best source
network evaluated on a validation set randomly drawn from the
whole data set is a successful transfer strategy.

4.2.4. Reduced size of demanded training trials
By using transfer strategies we may reduce the number of

training trials without jeopardizing the performance. In the field
of BCI, it is advantageous to use the reduced size of training trials,
since this would reduce the calibration time of the BCI system.

We took the subject 4 of the BCIC IV 2a to demonstrate how
the classification performance changes when we finetune the tar-
get network using only part of the training trials provided by the
target subject. The results are given by Fig. 4(a). As the number
of trials used to train the network increases, the classification
performance of the WaSF ConvNet is improved. The performance
of the weight-transferred network reaches the same performance
as the original fully trained network (randomly initialized and
trained using the training trials) only using about 40% of the
provided training trials. Fig. 4(b) gives the minimal training trials
of all subjects in the BCIC IV 2a data set that allow the weight-
transferred network to reach the performance of the original fully
trained network. As one can see in Fig. 4(b), the trials that are
used to train the weight-transferred network can be reduced
by 20% at least and to 62% in average. This indicates that for a
new subject, by using weight transfer, the calibration time of the
BCI system can be shortened by 20%, significantly increasing its
practicability.
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Table 6
Transferring weights with different strategies in BCIC IV 2a data set.
Subject No Transfer Top1 Top3 Weighted Mean

κ acc κ acc κ acc κ acc κ acc

s1 0.62 0.71 0.63 0.72 0.61 0.71 0.62 0.71 0.64 0.73
s2 0.32 0.49 0.32 0.49 0.30 0.47 0.31 0.49 0.30 0.48
s3 0.71 0.78 0.75 0.82 0.71 0.79 0.70 0.77 0.73 0.80
s4 0.40 0.55 0.44 0.58 0.38 0.53 0.35 0.51 0.34 0.51
s5 0.59 0.69 0.60 0.70 0.58 0.68 0.58 0.68 0.59 0.69
s6 0.33 0.50 0.38 0.54 0.36 0.52 0.33 0.50 0.34 0.51
s7 0.66 0.74 0.69 0.77 0.69 0.76 0.69 0.77 0.69 0.76
s8 0.72 0.79 0.71 0.79 0.72 0.79 0.69 0.77 0.70 0.77
s9 0.69 0.77 0.73 0.80 0.73 0.80 0.69 0.76 0.69 0.77
Mean 0.558 0.668 0.583 0.690 0.564 0.672 0.551 0.662 0.558 0.669

Table 7
Transferring weights on the BCIC IV 2b data set.
Subject No transfer Top1

κ acc κ acc

s1 0.47 0.74 0.51 0.75
s2 0.27 0.64 0.27 0.64
s3 0.72 0.86 0.74 0.87
s4 0.95 0.98 0.96 0.98
s5 0.73 0.86 0.71 0.86
s6 0.45 0.73 0.41 0.70
s7 0.77 0.89 0.81 0.90
s8 0.86 0.93 0.84 0.92
s9 0.62 0.81 0.66 0.83
Mean 0.649 0.827 0.657 0.828

4.2.5. Comparison with the state-of-the-art results
In Table 8, we compared the final classification performance

of our proposed method with excellent performance of the state-
of-the-art methods,4 such as FBCSP (Kai et al., 2008), OSTP (Ang
et al., 2012), ConvNets (Schirrmeister et al., 2017), and DSP (Ofner
et al., 2017).

For the BCI competition IV data set 2a, our approach obtains
accuracy in a very similar range as FBCSP, whereas slightly worse
than ConvNets with 0.74 mean accuracy. However on the two
additional data sets, the BCI competition IV data set 2b and the
upper limb movement data set, WaSF ConvNet both reach better
performance than the state-of-the-art results (about 4.8% mean
kappa and 14.8% mean accuracy higher, respectively).

5. Conclusions

In this paper, we have proposed a convolutional network (Con-
vNet) combining wavelet transformation with spatial filtering to
decode EEG signals end-to-end. Inspired by wavelet transforma-
tion, we design Morlet wavelet-like kernels for the convolution
process in our deep network. Each wavelet kernel only has two
free parameters to learn, i.e. the bandwidth of the Gaussian
time window and the center frequency, significantly reducing
the number of parameters compared with classical convolutional
kernels and thereby decreasing the risk of overfitting. The uti-
lization of wavelet kernels also endows the features learned at
the corresponding layer with a clear interpretation (spectral am-
plitude). The features learned in our network have been shown
matching the neuronal activity of sensorimotor areas for motor
imagery EEG data. Experimental results on three public data sets
reveal that our convolutional network significantly outperforms
the method using manually designed wavelet spectral amplitudes
with a separate classifier.

4 Some methods only report either of evaluation measures (κ or accuracy)
in the literatures, thus we replace the absent value with — in Table 8.

Table 8
Comparison of the ultimate mean performance of the WaSF ConvNet with
State-of-the-art Results.
Data sets Models κ acc

BCIC IV 2a

WaSF ConvNet 0.58 0.69
FBCSP 0.57 0.67
OSTP 0.60 0.72
ConvNets – 0.74

BCIC IV 2b

WaSF ConvNet 0.66 0.83
FBCSP 0.60 0.79
OSTP 0.60 0.78
ConvNets 0.63 –

Upper limb WaSF ConvNet 0.17 0.31
DSP – 0.27

We further solve the contradiction between large amount of
demanded data for training deep ConvNets and small labeled data
collected in the BCI experiments by subject-to-subject weight
transfer, which borrows weights from existing subjects to ini-
tialize the network for a new subject. The proposed strategy has
been verified to be with beneficiary transfer. The results suggest
that, through using the proposed transfer learning strategy, a BCI
system is able to adapt to a new subject with shorter training
sessions. This will make the BCI system more user friendly, im-
proving the applicability of the BCIs. Additionally, with the help
of weight transfer, our approach has obtained superior classifica-
tion performance to the state-of-the-art methods, indicating that
jointly learning features in space–time–frequency domains and
the classifying will be a promising attempt for EEG decoding in
BCI.

There still exist several points to be improved. For example,
learning the network requires quite a long time comparing with
the traditional process (i.e. classifying based on handcrafted fea-
tures). We will try to reduce the training time of the network
using paralleling training strategies in the future. Moreover the
evaluation of our WaSF ConvNet has been limited to motor im-
agery EEG data. Our future work will extend the current network
to a generic classification method for multivariate time series
data.
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Appendix. EEG decoding model based onmorlet wavelet trans-
formation

The baseline method decomposes the signals into several fre-
quency bands of time–frequency representation using complex
Morlet wavelet transformation, and then extracts the mean spec-
tral amplitude (Rotermund et al., 2013) in the corresponding
frequency band as input features to a SVM classifier.

Example EEG Data is first band-pass filtered between 8 Hz
and 30 Hz using a 5th order Butterworth filter. The preprocessed
signals are denoted by xm,n(t), where m denotes the trial, n the
electrode, and t the time. The preprocessed signals are then
convolved with complex Morlet wavelets w(t, f0) to obtain the
wavelet coefficients am,n(t, f0).

am,n(t, f0) =

∫
∞

−∞

w(τ , f0)xm,n(t − τ )dτ (11)

The central frequency f0 needs to be manually determined. In this
paper, we choose 8 frequencies, i.e. {8, 10, 12, 13, 15, 20, 25, 30}.
With one specified central frequency, we can obtain one series
of complex wavelet coefficients denoted by a(t) = α(t) expiφ(t),
where α denotes the amplitude and φ represents the phase. Aver-
age spectral amplitude is then computed by A =

1
t1−t0

∑t1
t=t0

α(t)
and chosen as the feature.

Features are finally input to a support vector machine (SVM)
for classification. The regularization parameter was manually se-
lected by exhaustive search using 5-fold cross-validation. Can-
didates of the regularization parameter are the set of {0.0001,
0.005, 0.01, 0.05, 0.1, 1, 5, 10, 20, 50, 100, 500, 600, 1000}.
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