
Neurocomputing 317 (2018) 42–49 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

Group feature selection with multiclass support vector machine 

Fengzhen Tang 

a , Lukáš Adam 

b , ∗, Bailu Si a 

a State key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, No.114, Nanta Street, Shenyang, Liaoning Province 

110016, China 
b Southern University of Science and Technology, 1088 Xueyuan Ave, Nanshan Qu, Shenzhen, Guangdong Province 518055, China 

a r t i c l e i n f o 

Article history: 

Received 19 October 2017 

Revised 27 May 2018 

Accepted 3 July 2018 

Available online 17 July 2018 

Communicated by Dr. Chenping Hou 

Keywords: 

Group feature selection 

Support vector machine 

Multiclass support vector machine 

Alternating direction method of multipliers 

EEG channel selection 

a b s t r a c t 

Feature reduction is nowadays an important topic in machine learning as it reduces the complexity of 

the final model and makes it easier to interpret. In some applications, the features arise from multiple 

sources and it is not so important to select the individual features as to select the important sources. This 

leads to a group feature selection problem. In this paper, we consider the group feature selection in the 

multiclass classification setting based on the framework of support vector machines. We reformulate it 

as a sparse problem by prescribing the maximum number of active groups and propose a novel method 

based on the ADMM algorithm. We proposed the method in such a way that the main computational 

load is performed in the first iteration and the remaining iterations can be computed fast. This allows us 

to handle large problems. We demonstrate the good performance of our method on several real-world 

datasets. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Feature selection is an important procedure in many machine

learning applications such as text classification or DNA analysis. It

aims at selecting a small number of features which contain no ir-

relevant or redundant features. Besides identifying the important

features, it helps to reduce the computational load and may im-

prove the classification performance. In this work, we focus on

supervised feature selection. They can be roughly grouped into

three categories: Filter, wrapper, and embedded methods [13] . Fil-

ter methods evaluate the relevance of features via univariate statis-

tics. The wrapper approach repeatedly uses a classifier to search

for relevant features. Embedded methods perform variable selec-

tion as part of the learning procedure. Since filter methods usually

evaluate all features independently they perform worse than wrap-

per or embedded methods. Since embedded methods are more

computationally efficient than wrapper methods while maintain-

ing comparable selection results, we focus mainly on them in this

paper. 

In many applications, data are obtained from multiple sources

and each source produces several features [29] . For example, in the

EEG (Electroencephalography) signal classification [20] , signals are

obtained by attaching multiple electrodes to a person’s head. The

signal emitted from each electrode is then represented via several
∗ Corresponding author. 
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oefficients. Thus the input features possess group structure, where

he coefficients corresponding to one electrode form one group. In

his case, feature selection imposed on individual features may not

eveal this structure information. Hence, instead of finding impor-

ant individual features, finding important feature groups is more

uitable in this scenario. This leads to the problem of group feature

election. 

So far, several research works related to group feature selection

ave been presented, such as group Lasso [22,27,38] , sparse group

asso [28] , and Bayesian Group Lasso [25] . However, these group

eature selection methods were mainly based on square loss and

ogistic loss for regression and classification analysis. There does

xist one work exploring hinge loss popularized by Support Vector

achines (SVM) [12] . But this work only targets at regression and

inary classification, leaving multiclass support vector machine un-

xplored. Even though, group feature selection for multiclass clas-

ification problem can be simply decoupled to group feature selec-

ion for several binary classification problems [12] via one-against-

est or one-against-one strategies. However, this way will not be

ble to identify relevant feature groups that simultaneously works

ell for all classes. There do exist several works related to this si-

ultaneous multiclass feature selection [11] . But these works did

ot consider the group feature selection. 

There are many methods for feature selection, see the excel-

ent reviews [14,16,31] . In this manuscript, we will concentrate on

eature selection via the powerful classification algorithm multi-

lass support vector machines [32] . In [31] the authors introduced

parsity regularization in the linear dynamic analysis. The recur-

https://doi.org/10.1016/j.neucom.2018.07.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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‖  
ive feature elimination, which starts with the whole set of fea-

ures and removes one feature at every iteration, was extended

or multiclass support vector machines in [11,39] . A framework of

caling factors is also introduced for multiclass support vector ma-

hines to perform feature selection across multiclass [11,36] . Paper

30] extends variational relevant vector machine [5] to group fea-

ure selection. 

Many methods are based on the (group) Lasso regularization.

utside of the SVM context, they have been employed in [27] for

eneralized linear models, in [22] for logistic regression models,

n [18] for overlapping groups, or in [23] to automatically select

alient nodes in deep neural networks. In the SVM context, the

roup Lasso is either applied directly as in [36] or it is argued that

he group Lasso is a convex approximation of the group zero norm

9] . Some methods attack this group zero norm [21] or necessary

ptimality conditions are used to solve the problem [1,24] . 

In this paper, we propose a novel sparse group feature selec-

ion method for multiclass support vector machine (MSVM). Our

ethod can choose an optimal subset of features in a grouped

anner simultaneously working well for all classes. We mention

he generalization of the recursive feature elimination to select

roups instead of individual features. The main result is to use the

ll-together approach for MSVM of [35] , consider the group zero

orm and solve it via the ADMM method [7] . 

The group Lasso and group zero norm terms are usually placed

n the objective. Since this means one additional hyperparameter,

e place it into the constraints. We derive a special decomposi-

ion for the ADMM method such that most of the work is done in

he first iteration and the remaining iterations are relatively cheap.

he ADMM method is known to quickly provide a reasonable solu-

ion estimate but the convergence to optimality may be slow. Since

e are interested only in determining relevant feature groups, we

top ADMM once the features groups are stabilized. The actual

odel coefficient can then be computed by restricting the origi-

al features to the selected features by any classification technique.

e show good performance of our method on several real-world

atasets. 

This paper is organized as follows: Section 2 introduces sup-

ort vector machines and multiclass group feature selection. In

ection 3 we first generalize the recursive feature elimination to

andle groups. Then we formulate the MSVM for feature selection

nd propose how to solve it via the ADMM method. We comment

n the computational complexity and provide a comparison with

he group Lasso method. Finally, in Section 4 we show the good

erformance of our method on several real-world datasets. 

. Sparsity inducing terms 

In this section, we provide a brief introduction to support vec-

or machines, group feature selection, and multiclass feature selec-

ion methods. In the last part, we then combine all these part to

erive an optimization problem for multiclass group feature selec-

ion based on support vector machines. 

In the whole manuscript, we assume to have n pairs of training

ata { x i , y i } n i =1 
, where x i ∈ R 

d is the feature vector corresponding

o i th sample, and y i is the class label of x i . Unless stated other-

ise, we assume that there are K classes with labels 1 , . . . , K. 

.1. Support vector machines 

Support vector machines (SVMs) are powerful supervised algo-

ithms for classification. Originally designed for binary classifica-

ion, their decision boundary is represented by a linear function

 

� x + b, where w ∈ R 

d is the weight vector and b ∈ R is the shift

f the separating hyperplane. When the labels are +1 or −1 , the

dea of SVMs is to maximize the margin between the samples and
he separating hyperplane by solving 

inimize 
w,b,ξ

1 

2 

‖ w‖ 

2 
2 + C 

n ∑ 

i =1 

ξi 

ubject to y i 
(
w 

� x i + b 
)

≥ 1 − ξi , 

ξi ≥ 0 , i = 1 , . . . , n, 

(1) 

ere, the first term of the objective is the regularization, the sec-

nd term measures the classification error and C > 0 specifies the

rade-off between them. For a general x , the decision rule is based

n the sign of w 

� x + b. 

Many real-world classification tasks involve multiclass classifi-

ation. There are two popular approaches. In the one-vs-one and

ne-vs-rest approaches, the multiclass classification problem is di-

ided several times into binary classification problems and mul-

iple models are built. The class with most “wins” is selected as

he predicted class. However, since each model considers a differ-

nt coefficient vector w , this approach is not suitable for feature

election. The authors of [35] employed the all-together approach

nd assigned a separating hyperplane w 

� 
k 

x + b k to every class k .

he goal is then again to maximize the margin, which yields the

ollowing problem 

minimize 
w,b,ξ

1 

2 

K ∑ 

k =1 

‖ w k ‖ 

2 
2 + C 

n ∑ 

i =1 

∑ 

k � = y i 
ξik 

ubject to (w y i − w k ) 
� x i + b y i − b k ≥ 1 − ξik , 

ξik ≥ 0 , i = 1 , . . . , n, k � = y i . (2) 

imilarly as for binary SVMs (1) , to a general x a class with the

ighest value of w 

� 
k 

x + b k is assigned. For a detailed review of both

inary and multiclass SVMs we refer to [8,32] . 

.2. Group feature selection via group lasso 

In many applications, there are J pairwise disjoint feature

roups G 1 , . . . , G J and the task is to select a small number of the

elevant feature groups instead of a small number of the rele-

ant features. Many embedded group feature selection methods

re based on the group Lasso defined by 

 w‖ 

group 
2 , 1 

:= 

J ∑ 

j=1 

‖ w G j ‖ 2 = 

J ∑ 

j=1 

√ ∑ 

f∈ G j 
w 

2 
f 
, (3)

here w G j 
is the restriction of w to group G j . The group sparsity

nducing term ‖ w‖ group 
2 , 1 

is usually added to the objective. 

.3. Multiclass feature selection via group lasso 

While in the previous section we considered two classes with

ultiple feature groups, here we consider K classes without any

roup structure. Similarly as before, it is possible to use the group

asso to select features 

 w‖ 

mclass 
2 , 1 := 

d ∑ 

j=1 

‖ w ·, j ‖ 2 = 

d ∑ 

j=1 

√ 

K ∑ 

k =1 

w 

2 
k, j 

. (4)

y w k, j we understand the j th component of w k and by w · , j the

 -dimensional vector composed by w k, j for all k . Paper [21] argued

hat ‖ w‖ mclass 
2 , 1 

is just a convex approximation of the group zero

orm 

 w‖ 

mclass 
0 , 1 := 

d ∑ 

j=1 

‖ w ·, j ‖ 0 = # { j| w k, j � = 0 for some k } . (5)
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They further observed that this sparse inducing term can be writ-

ten as a difference of convex (DC) functions and used a DC algo-

rithm to solve the resulting problem. In [36] the authors used a

clever technique combining both of the approaches above: They

considered ‖ w‖ mclass 
p, 1 

for a general p ∈ [0, 1] and updated p auto-

matically. 

2.4. Multiclass group feature selection via group lasso 

To get a group multiclass sparsity induding term, we combine

the group sparsity inducing term ‖ w‖ group 
2 , 1 

from (3) with the mul-

ticlass sparsity inducing term ‖ w‖ mclass 
2 , 1 

from (4) to obtain 

‖ w‖ 2 , 1 := 

J ∑ 

j=1 

‖ w ·,G j ‖ 2 = 

d ∑ 

j=1 

√ √ √ √ 

K ∑ 

k =1 

∑ 

f∈ G j 
w 

2 
k, f 

. (6)

Building on the notation above, by w ·,G j we understand the union

of w · , f for all f ∈ G j , thus all coefficients of the weight vector cor-

responding to the given group. Theoretically, we could add (6) di-

rectly to the multiclass SVM problem (2) but this would mean one

more hyperparameter which could be difficult to tune [2] . Instead

we decided to work with the generalization of ‖ w‖ mclass 
0 , 1 

from

(5) to define the following multiclass group zero norm 

‖ w‖ 0 , 1 := 

J ∑ 

j=1 

‖ w ·,G j ‖ 0 

= # 

{
j 
∣∣ w k, f � = 0 for some k and some f ∈ G j 

}
. (7)

Then we modify problem (2) by prescribing the maximum number

of important groups s max : 

minimize 
w,b,ξ

1 

2 

K ∑ 

k =1 

‖ w k ‖ 

2 
2 + C 

n ∑ 

i =1 

∑ 

k � = y i 
ξik 

subject to ( w y i − w k ) 
� x i + b y i − b k ≥ 1 − ξik , 

ξik ≥ 0 , i = 1 , . . . , n, k � = y i , 

‖ w‖ 0 , 1 ≤ s max . 

(8)

3. Simultanous multiclass group feature selection 

In this section, we present two methods for multiclass group

feature selection. The first method is a simple adaptation of the

recursive feature elimination. The second method solves directly

(8) via the ADMM method. For the second method, we then pro-

vide a basic analysis of computational complexity and compare

with the “standard” group Lasso. 

3.1. Multiclass recursive group feature elimination 

First, we extend the multiclass recursive feature elimination

(RFE) method to group feature selection. The algorithm starts with

an active list of all features and removes one group after another.

At every iteration, the weights w k are computed with zeros at the

inactive features by any all-together classification method. Then for

every active group j , the score 

s j := 

1 

| G j | ‖ w ·,G j ‖ 

2 
2 = 

1 

| G j | 
K ∑ 

k =1 

∑ 

f∈ G j 
w 

2 
k, f 

is computed and the group with the smallest score is made inac-

tive. 
.2. Solving (8) with ADMM 

In this section, we apply the alternating direction method of

ultipliers (ADMM) to (8) . The ADMM [7] is a popular optimiza-

ion method which has been already used to solve classification

roblems in SVMs [4,37] . However, to the best of our knowledge,

t has never been used for multiclass group selection. The ADMM

s a dual ascent method, where the gradient of the dual objective

s computed only approximately. Since it is a dual method, usually

 convexity is required for convergence proofs. We make use of the

ecent results of [15] , where a convergence of ADMM was shown

lso for some non-convex problems with sparsity constraints. 

To simplify the notation, we first write (8) in a compact form.

ecall that K is the number of classes, d the number of fea-

ures and n the number of samples. We define w := [ w 1 ; . . . ; w K ] ∈
 

Kd and b := [ b 1 ; . . . ; b K ] ∈ R 

K and collect ξ ik into one vector ξ ∈
 

(K−1) n . Finally we collect the first constraint in (8) into a matrix

 w 

∈ R 

(K −1) n ×K d containing in every row only x � 
i 

a −x � 
i 

and a ma-

rix A b ∈ R 

(K−1) n ×K containing in every row only 1 a −1 . Then we

ay rewrite (8) into 

minimize 
w,b,ξ

1 

2 

w 

� w + C1 

� ξ

subject to A w 

w + A b b ≥ 1 − ξ, 

ξ ≥ 0 , 

‖ w‖ 0 , 1 ≤ s max . 

(9)

y combining both constraints on ξ we obtain ξ ≥ max { 1 − A w 

w −
 b b, 0 } . This results in (8) 

minimize 
w,b 

1 

2 

w 

� w + C1 

� max { 1 − A w 

w − A b b, 0 } 
subject to ‖ w‖ 0 , 1 ≤ s max . 

(10)

To apply ADMM to (10) , we need to make this problem sepa-

able with only linear constraints. For the separability, we intro-

uce artificial variables y = 1 − A w 

w − A b b and z = w while for the

inear constraints, we use the standard argument of enforcing the

onstraint in objective by using the indicator function 

(‖ z‖ 0 , 1 ≤ s max ) = 

{
0 if ‖ z‖ 0 , 1 ≤ s max , 

+ ∞ otherwise. 

hen problem (10) reads 

minimize 
w,b,y,z 

1 

2 

w 

� w + C1 

� max { y, 0 } + I(‖ z‖ 0 , 1 ≤ s max ) 

subject to y = 1 − A w 

w − A b b, 

z = w. 

(11)

ow we introduce the scaled version of the augmented Lagrangian

7, Section 3.1.1] by 

 (w, b, y, z;λ, μ) := 

1 

2 

w 

� w + C1 

� max { y, 0 } + I(‖ z‖ 0 , 1 ≤ s max ) 

+ 

ρ

2 

‖ y − 1 + A w 

w + A b b + λ‖ 

2 
2 + 

ρ

2 

‖ z − w + μ‖ 

2 
2 . (12)

ere λ and μ are the multipliers associated with the first and sec-

nd constraint in (11) , respectively and ρ > 0 is an arbitrary pa-

ameter. 

ADMM is an iterative algorithm. In iteration l , the current iter-

te ( w 

l , b l , y l , z l , λl , μl ) is updated in the following four steps 

(w 

l+1 , b 

l+1 , y l+1 ) = argmin 

w,b,y 

L (w, b, y, z l ;λl , μl ) , (13a)

 

l+1 = argmin 

z 
L (w 

l+1 , b 

l+1 , y l+1 , z;λl , μl ) , (13b)

l+1 = λl + y l+1 − 1 + A w 

w 

l+1 + A b b 

l+1 , (13c)
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s

ik i 
l+1 = μl + z l+1 − w 

l+1 . (13d) 

Even though (13a) is a quadratic programming problem, it does

ot have a closed-form solution. Since ADMM does not provide an

xact gradient for the dual ascent but only its approximation, we

urther approximate (13a) by solving first for (w 

l+1 , b l+1 ) and only

hen for y l+1 . When solving (13a) with respect to ( w , b ), we can

mit two terms of the Lagrangian L which do not depend on w

nd b . Then we get 

inimize 
w,b 

1 

2 

w 

� w + 

ρ

2 

‖ y l − 1 + A w 

w + A b b + λl ‖ 

2 
2 

+ 

ρ

2 

‖ z l − w + μl ‖ 

2 
2 . 

ince this is a quadratic unconstrained problem, it is equivalent to

etting its derivatives with respect to w and b to zero. This yields 

 + ρA 

� 
w 

(
y l − 1 + A w 

w + A b b + λl 
)

− ρ
(
z l − w + μl 

)
= 0 , 

(14) 
ρA 

� 
b 

(
y l − 1 + A w 

w + A b b + λl 
)

= 0 . 

his is a system of linear equations. We comment on a precise

ay of solving it later in Section 3.3 . The second part of solving

13a) amounts to minimizing it with respect to y . Ignoring again

he constant terms, this is equivalent to 

minimize 
y 

C1 

� max { y , 0 } + 

ρ

2 

‖ y − 1 + A w 

w 

l+1 + A b b 

l+1 + λl ‖ 

2 
2 . 

(15) 

his problem can be decomposed into multiple problems in one

eal variable and analysis of all possible cases shows that the solu-

ion takes the form 

 

l+1 = T soft (1 − A w 

w 

l+1 − A b b 

l+1 − λl , ρ−1 C1) , (16)

here T soft ( t 1 , t 2 ) is the shifted soft-thresholding operator [7, Sec-

ion 4.4.3] 

 soft (t 1 , t 2 ) = max { min { t 1 , 0 } , t 1 − t 2 } . 
Since only two terms in L depend on z , solving (13b) amounts

o 

minimize 
z 

1 

2 

‖ z − w 

l+1 + μl ‖ 

2 
2 

subject to ‖ z‖ 0 , 1 ≤ s max . 

his problem has a closed-form solution. For each j = 1 , . . . , J de-

ne the score s j corresponding to the feature group G j by 

 j := ‖ w 

l+1 
·,G j − μl 

·,G j ‖ 

2 
2 = 

K ∑ 

k =1 

∑ 

f∈ G j 
(w 

l+1 
k, f 

− μl 
k, f ) 

2 . (17)

hen the solution of (13b) componentwise reads 

 

l+1 
k, f 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

w 

l+1 
k, f 

− μl 
k, f if s j is among s max largest score values 

and f ∈ G j ;
0 otherwise. 

(18) 

he multiplier updates (13c) and (13d) are trivial. 

.3. Numerical solution procedure 

The computationally most demanding part from the previous

ection is solving system (14) . After some linear algebra and scaling

y ρ−1 , it can be written in the form 
 

(1 + ρ−1 ) 

(
I 0 

0 0 

)
︸ ︷︷ ︸ 

Q 1 

+ 

(
A 

� 
w 

A 

� 
b 

)
︸ ︷︷ ︸ 

Q � 
2 

(
A w 

A b 

)] (w 

l+1 

b 

l+1 

)

= 

(
z l + μl − A 

� 
w 

(y l − 1 + λl ) 

−A 

� 
b 
(y l − 1 + λl ) 

)
. (19) 

n every iteration, we need to invert Q 1 + Q 

� 
2 

Q 2 . Note that it is a

xed matrix with dimension K(d + 1) × K(d + 1) . Moreover, it is

 positive semidefinite matrix and can be made positive definite

atrix by either adding a small multiple of the identity matrix to

 1 or by considering b as one feature group, which would change

 1 into the identity matrix. Now there are two possibilities. 

If the number of features d is smaller or comparable to the

umber of samples n , we can compute the Cholesky decomposi-

ion of Q 1 + Q 

� 
2 Q 2 , thus to find a regular lower triangular matrix

 1 with 

 1 B 

� 
1 = (1 + ρ−1 ) 

(
I 0 

0 0 

)
+ 

(
A 

� 
w 

A 

� 
b 

)(
A w 

A b 

)
. (20)

hen (19) reads 

w 

l+1 

b 

l+1 

)
= (B 

−1 
1 ) � B 

−1 
1 

(
z l + μl − A 

� 
w 

(y l − 1 + λl ) 

−A 

� 
b 
(y l − 1 + λl ) 

)
. (21)

ince B 1 is a lower triangular matrix, system (21) is easy to solve. 

If the number of features d is large, the computation from the

revious paragraph is infeasible, and it may be advantageous to

se the Woodbury matrix identity to obtain 

(Q 1 + Q 

� 
2 Q 2 ) 

−1 = Q 

−1 
1 − Q 

−1 
1 Q 

� 
2 (I + Q 2 Q 

−1 
1 Q 

� 
2 ) 

−1 Q 2 Q 

−1 
1 . (22)

ote that Q 1 can be made a diagonal matrix with positive en-

ries by one of the two possibilities mentioned above, and thus

 

−1 
1 

is simple to compute. Moreover, the positive definite matrix

 + Q 2 Q 

−1 
1 

Q 

� 
2 has dimension (K − 1) n × (K − 1) n and if there is a

easonable number of samples n , the Cholesky decomposition can

e again computed to get a lower triangular matrix B 2 with 

 2 B 

� 
2 = I + Q 2 Q 

−1 
1 Q 

� 
2 . (23)

hen (19) is due to (22) and (23) equivalent to 

w 

l+1 

b 

l+1 

)
= 

(
Q 

−1 
1 − Q 

−1 
1 Q 

� 
2 (B 

−1 
2 ) � B 

−1 
2 Q 2 Q 

−1 
1 

)
×
(

z l + μl − A 

� 
w 

(y l − 1 + λl ) 

−A 

� 
b 
(y l − 1 + λl ) 

)
. (24) 

he great advantage of these approaches is that it suffices to

ompute one Cholesky decomposition and then every iteration of

DMM is cheap. 

We summarize this whole procedure in Algorithm 3.1 . The

sual termination criterion is based on a change in primal and dual

ariables. However, since we are interested in determining the im-

ortant feature groups, we stop ADMM when the feature groups

tabilize and then run the multiclass SVM classification on the se-

ected features. 

.4. Connection to the group lasso 

The usual approach is to consider the convex term ‖ w ‖ 2,1 in

he objective instead of the discontinuous term ‖ w ‖ 0,1 in the con-

traints as in our problem (8) . This results in 

minimize 
1 

2 

K ∑ 

k =1 

‖ w k ‖ 

2 
2 + C 

n ∑ 

i =1 

∑ 

k � = y i 
ξik + 

ˆ C ‖ w‖ 2 , 1 

subject to ( w y i − w k ) 
� x i + b y i − b k ≥ 1 − ξik , 

ξ ≥ 0 , i = 1 , . . . , n, k � = y . 

(25) 



46 F. Tang et al. / Neurocomputing 317 (2018) 42–49 

Algorithm 3.1 For solving (8) . 

1: Compute B 1 or B 2 from the Cholesky decomposition in (20) or 

(23) 

2: Set initial data (y 0 , z 0 , λ0 , μ0 ) 

3: for l = 1 , . . . , maxIter do 

4: Update (w 

l+1 , b l+1 ) via (21) or (24) 

5: Update y l+1 via (16) 

6: Update z l+1 via (18) 

7: Update λl+1 via (13c) and μl+1 via (13d), respectively 

8: if s max largest scores from (17) did not change then 

9: break 

10: end if 

11: end for 

12: Obtain a classifier on the selected features 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Dataset description. 

Dataset Classes Samples Samples train Features Groups 

GSA 6 13,910 30 0/60 0/120 0 128 16 

USPS 10 9298 50 0/10 0 0/150 0 256 16 

Smartphones 6 10,299 30 0/60 0/120 0 561 18 

RNA-Seq 1 5 801 100 20,531 20,531 

RNA-Seq 2 5 801 100 20,530 4106 

K3B 4 180 126 180 60 
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Even though (8) and (25) look similar, there are some key

differences between them. First, (25) is a convex problem while

(8) is a non-convex problem. Second, (25) is simpler to solve while

(8) is closer to the group feature selection problem. Third, problem

(25) contains hyperparameters C and ˆ C while problem (8) contains

hyperparameters C and s max . The second set of hyperparameters

should be easier to tune as s max has, on the contrary to ˆ C , a direct

interpretation as the maximal number of selected groups. 

Since (25) is a convex quadratic program, if we apply ADMM

to it, we have guaranteed convergence. The ADMM would result in

the same procedure as Algorithm 3.1 and the only difference is the

z l+1 update (18) which would take the form 

z l+1 
k, f 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

w 

l+1 
k, f 

− μl 
k, f if s j ≥

2 

ρ
ˆ C , where j is unique group 

index with f ∈ G j , 

0 otherwise. 

(26)

In other words, while our method in (18) always sets s max fea-

tures to be non-zero, (26) updates z in the identical way but the

number of non-zero features changes in every iteration. Since the

latter algorithm has guaranteed convergence and Algorithm 3.1 is

very similar to it, this could explain the good convergence of the

ADMM method as observed in the numerical section. 

4. Numerical experiments and discussion 

In this section, we show the good numerical performance of our

methods. We consider the RFE method proposed in Section 3.1 and

the ADMM method from Section 3.2 . While the RFE method starts

with the full set of groups and removes one group after another,

the ADMM method fixes the maximal number of groups s max and

finds s max feature groups. Since this makes the RFE method un-

suitable for problems with a large number of feature groups, we

concentrate mainly on the ADMM method. 

We consider three classes of real-world datasets. All three

classes follow a different goal. The first category (datasets GSA

[26,33] , USPS [17] and Smartphones [3] ) shows that our methods

outperform other group feature selection methods. The second cat-

egory (datasets RNA-Seq 1 and RNA-Seq 2 [34] ) shows that even

for datasets with a large number of features, the ADMM method

selects group features which achieve high accuracy. The third cat-

egory (dataset K3B [6] ) is a neuroscience application, where the

relevant features are known. We show that our methods can select

these features. The datasets are summarized in Table 1 and can be

found online. 1 
1 GSA, Smartphones and RNA-Seq 1 are from the UCI depository, USPS 

can be downloaded from https://www.csie.ntu.edu.tw/ ∼cjlin/libsvmtools/datasets/ 

multiclass.html , RNA-Seq 2 is a manual modification of RNA-Seq 1 and K3B is from 

http://www.bbci.de/competition/iii/ . 

m  

B  

l  

o  

i

All data were normalized and each dataset was randomly di-

ided into the training and testing sets 100 times. The depicted

esults are averages over all these trials. Concerning hyperparam-

ters, we chose ρ = 10 0 0 for all experiments. For categories 1

nd 3, we determined C by 5-fold cross-validation on the whole

ataset and considered all possible values of the maximal number

f groups s max . For category 2, we fixed C = 1 and chose s max from

 10 , 20 , . . . , 100 } . After the ADMM method selects the relevant fea-

ures, any linear model can be used to determine the weights w .

e used LIBSVM [10] . 

.1. Category 1: Comparison with existing methods 

We followed the setting from [12] and considered three

atasets. The Gas Sensor Array (GSA) dataset contains information

rom 16 chemical sensors exposed to 6 gases at different concen-

ration levels. Each sensor provided 8 features, which resulted in

6 groups and 128 features. The goal is to discriminate the six dif-

erent gases. The Smartphones dataset is built from recordings of

7 signals of 30 subjects performing six activities (walking, walk-

ng upstairs, walking downstairs, sitting, standing, and lying) while

earing a smartphone. Features such as mean, correlation, or au-

oregressive coefficients were subsequently extracted from these

7 signals. Besides, one additional group of features was obtained

y averaging the signals in a signal window sample. This resulted

n 18 feature groups with a different number of features in each

roup. The USPS dataset contains handwritten digits, each repre-

ented by a 16 × 16 matrix. Following [12] , each column of this

epresentation is regarded as one group. 

Since there are not many multiclass group feature selection

ethods, and especially not in the SVM context, we compare the

erformance with the Bayesian Group Feature Selection for Sup-

ort Vector Machines (BGFS-SVM) method [12] , where the feature

election in the multiclass setting is tackled via decoupling it into

everal binary group feature selection problems via the one-vs-rest

trategy. This paper also implemented the group Lasso (G-Lasso)

38] and the sparse group Lasso (SG-Lasso) [28] . As in [12] , we

andomly select for each dataset training instances from each class

ith the size of {50, 100, 200} and the rest instances are used as

he test set. 

The average prediction accuracies of our ADMM and RFE meth-

ds are given in Fig. 1 . The performance of both methods is fairly

imilar: When averaged over all values of s max , the ADMM was bet-

er four times while the RFE gave a better performance five times.

oreover, especially for the GSA and Smartphones datasets, the

erformance did not decline when more than half of the groups

ere omitted. 

In [12] , the authors showed the performance of the BGFS-SVM

ethod for 7, 11 and 8 maximal groups for the datasets GSA, USPS

nd Smartphones, respectively. In Table 2 , we depict the perfor-

ance of the ADMM method for these values. Following the name

GFS-SVM, we denote our method GFS-MSVM (Group Feature Se-

ection for Multiclass Support Vector Machines). In 7 out of 9 cases,

ur method GFS-MSVM outperformed the results presented in [12] ,

n the remaining two cases, it was only slightly worse. 

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
http://www.bbci.de/competition/iii/
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Fig. 1. The average prediction accuracy [%] of our methods on the datasets from category 1. 

Table 2 

Average prediction accuracy [%] on the benchmark datasets from category 1. Results 

for G-Lasso, SG-Lasso and BGFS-SVM are taken from [12] . Our method is denoted 

GFS-MSVM. 

Dataset n class G-Lasso SG-Lasso BGFS-SVM GFS-MSVM 

GSA 50 79.8 ± 4.4 83.0 ± 4.8 84.3 ± 1.7 94.7 ± 1.1 

100 84.3 ± 3.6 85.3 ± 4.0 92.0 ± 1.6 96.6 ± 0.6 

200 86.4 ± 3.5 88.3 ± 2.7 98.1 ± 0.8 97.5 ± 0.4 

USPS 50 69.0 ± 1.3 71.5 ± 1.5 86.6 ± 1.2 91.5 ± 0.7 

100 69.6 ± 1.4 72.2 ± 0.9 90.7 ± 0.4 92.7 ± 0.6 

200 72.7 ± 1.2 74.1 ± 1.2 92.5 ± 0.3 93.4 ± 0.9 

Smartphones 50 57.5 ± 3.5 58.2 ± 3.5 82.1 ± 1.6 91.2 ± 0.8 

100 71.3 ± 4.1 72.3 ± 2.8 92.6 ± 0.8 93.5 ± 1.0 

200 73.3 ± 4.1 74.1 ± 2.8 95.6 ± 0.3 95.2 ± 0.4 
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.2. Category 2: datasets with a large number of features 

In the RNA Seq dataset, for 801 patients with five different

inds of tumors (BRCA, KIRC, COAD, LUAD and PRAD) the expres-

ion levels of 20,531 genes were measured by the Illumina HiSeq

latform. On this dataset, we will show that the ADMM method

s able to reduce this large number of features into a small one

hile keeping a large prediction accuracy for the tumor type. As

n the previous category, we selected 20 samples for each class as

he training samples, which resulted in 100 training samples. Since

here is no information about the genes, we considered two cases:

hen each group consists of one gene (denoted RNA Seq 1) and

hen every five genes were grouped into one group (denoted RNA

eq 2). For the latter dataset, we adjusted the maximum number

f feature groups s max such that the number of selected features

ere the same for both datasets. 
The average accuracy can be seen in the left part of Fig. 2 . The

erformance on both datasets is very high. Theoretically, the per-

ormance on RNA Seq 1 should always be superior as there are

ore possibilities how to choose the given number of features.

owever, for a larger number of s max , the performance was bet-

er on the RNA Seq 2 dataset. This was likely caused by the fact

hat the grouping of genes decreased the size of the search space

or the second dataset. 

In the right part of Fig. 2 we show the experimental conver-

ence of the ADMM method on RNA Seq 1. The x -axis denotes the

enes while the y -axis denotes the iteration of the ADMM method

ntil it converges in iteration 885. The black vertical lines show in

hich iterations a given gene was selected in the s max = 30 most

mportant genes. We can see that the convergence displays the

eneficial property of stability of selected genes; some genes were

ven selected during all iterations. 

.3. Category 3: neuroscience application 

In this last category, we consider the neuroscience application,

here several electrodes were attached to the patient’s head. The

atient was then asked to imagine certain actions (left-hand, right-

and, foot or tongue movements) and the EEG signal of his brain

ctivity was recorded. We used the dataset IIIa from the BCI com-

etition. During the experiment, 60 EEG channels were recorded

ith a 64-channel EEG amplifier from Neuroscan. There were 180

abeled trials. 

Following [19] , we represented each electrode signal by the au-

oregressive model AR ( p ) over the 4 s window in which the imag-

nary movements were performed. The p coefficients formed a

roup of features corresponding to that EEG channel. Model order

p = 3 provided the best mean classification accuracy, which con-
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Fig. 2. Performace of the ADMM method on the datasets from category 2. The left figure shows the average precision accuracy. The right figure depicts one particular run 

showing which genes ( x -axis) were selected during which iteration ( y -axis). 
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Fig. 3. Selected electrodes for the ADMM and RFE methods for the dataset in cate- 

gory 3. 
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firms the findings of [20] . This representation resulted in 60 groups

of features, each with 3 features. 

In Fig. 3 we depict the selected channels. Channels 27–35 are

located on the primary motor cortex and represent the movement

of hand and foot. Channels 39–43 are on the primary somatosen-

sory cortex and are responsible for the movement of tongue, lips

and jaws. Channels 18–24 are located on the premotor cortex and

on the supplementary motor area and encode the intention, selec-

tion and control of movements. Channels 10–11, 15–16, 17, and 25

are close to the Broca’s area which is critically involved in language

comprehension and semantics. Finally, channels 37 and 45 are on

the Wernicke’s area which is involved in processing words. 

From its definition, the RFE method produces nested results,

thus all the five most important channels are contained in the ten

most important channels. This does not hold true for the ADMM

method. For the most five important channels, the ADMM method

identified channels 31, 41, 29, and 33 from the motor areas. These

channels are from the areas related to the limb and mouth move-

ment. In addition, the ADMM method also included channel 25 as

it conveys the semantic information of the imaginary movements.

The distribution pattern of the top five channels selected by the
FE method is very similar but it omitted the channel from the

emantic area. 

For the top ten channel, the ADMM method added more chan-

els from motor areas. Although the result does not conserve the

op five channels, it covers most of them. The top ten channels se-

ected by the ADMM method include channels 37 and 45 from the

anguage area. This demonstrates that the ADMM method is able to

xtract semantic or abstract concept information from the neural

ctivity. In general, all the channels selected by the ADMM method

re directly related to the task performed by the patient. 

. Conclusion 

Group feature selection selects features in a grouped manner

nd is useful to improve the interpretability and the prediction

erformance of models. While a lot of work related to the group

eature selection focuses on binary classification problems, we tar-

eted multiclass classification problems. We formulated the group

eature selection problem as a sparse learning problem in the

ramework of multiclass support vector machine and solved it by

he ADMM method. We provided several improvements to increase

he speed of the algorithm. The effectiveness of the proposed

ethod has been demonstrated on several real-world datasets. 

cknowledgments 

Dr. Fengzhen Tang’s work is supported by the State Key Lab-

ratory of Robotics (Grant No. Y7C120E101), Dr. Bailu Si’s work

s supported by the Distinguished Young Scholar Project of the

housand Talents Program of China (Grant No. Y5A1370101), while

ukáš Adam’s work is funded by the Ministry of Science and Tech-

ology of China (Grant No. 2017YFC0804003 ) and by the National

atural Science Foundation of China (Grant No. 61329302 ). 

eferences 

[1] L. Adam , M. Branda , Nonlinear chance constrained problems: optimality con-
ditions, regularization and solvers, J. Optim. Theory Appl. 170 (2) (2016a)

419–436 . 
[2] L. Adam , M. Branda , Sparse optimization for inverse problems in atmospheric

modelling, Environ. Modell. Softw. 79 (2016b) 256–266 . 
[3] D. Anguita , A. Ghio , L. Oneto , X. Parra , J.L. Reyes-Ortiz , A public domain dataset

for human activity recognition using smartphones, in: Proceedings of the on

European Symposium on Artificial Neural Networks, Computational Intelli-
gence and Machine Learning (ESANN), 2013 . 

[4] P. Balamurugan , A. Posinasetty , S. Shevade , ADMM for training sparse struc-
tural SVMs with augmented l 1 regularizers, in: Proceedings of the SIAM Inter-

national Conference on Data Mining, 2016, pp. 684–692 . 

https://doi.org/10.13039/501100002855
https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0004


F. Tang et al. / Neurocomputing 317 (2018) 42–49 49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

[  

[  

 

 

[  

[  

 

[  

 

 

 

[  

[  

 

[  

 

 

[

[  

 

[  

 

[  

 

[  

 

 

 

 

[  

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[5] C. Bishop , M.E. Tipping , Variational relevance vector machines, in: Proceedings
of the Sixteenth Conference on Uncertainty in Artificial Intelligence, Morgan

Kaufmann, 20 0 0, pp. 46–53 . 
[6] B. Blankertz , K.R. Müller , D.J. Krusienski , G. Schalk , J.R. Wolpaw , A. Schlögl ,

G. Pfurtscheller , J.R. Millán , M. Schröder , N. Birbaumer , The BCI competition
III: validating alternative approaches to actual BCI problems, IEEE Trans. Neu-

ral Syst. Rehabilit. Eng. 14 (2) (2006) 153–159 . 
[7] S. Boyd , N. Parikh , E. Chu , B. Peleato , J. Eckstein , Distributed optimization and

statistical learning via the alternating direction method of multipliers, Found.

Trends Mach. Learn. 3 (1) (2011) 1–122 . 
[8] C.J.C. Burges , A tutorial on support vector machines for pattern recognition,

Data Min. Knowl. Discov. 2 (1998) 121–167 . 
[9] E.J. Candès , M.B. Wakin , S.P. Boyd , Enhancing sparsity by reweighted l 1 mini-

mization, J. Fourier Anal. Appl. 14 (5) (2008) 877–905 . 
[10] C.-C. Chang , C.-J. Lin , LIBSVM: a library for support vector machines, ACM

Trans. Intell. Syst. Technol. 2 (2011) 27:1–27:27 . 

[11] O. Chapelle , S. Keerthi , Multi-class feature selection with support vector ma-
chines, in: Proceedings of the American Statistical Association, 2008 . 

[12] C. Du , C. Du , S. Zhe , A. Luo , Q. He , G. Long , Bayesian group feature selection
for support vector learning machines, in: Proceedings of the PAKDD, 2016, Part

I, pp. 239–252 . 
[13] I. Guyon , A. Elisseeff, An introduction to variable and feature selection, J. Mach.

Learn. Res. 3 (2003) 1157–1182 . 

[14] T. Hastie , R. Tibshirani , J. Friedman , The Elements of Statistical Learning: Data
Mining, Inference and Prediction, Springer, 2009 . 

[15] R. Hesse , D.R. Luke , P. Neumann , Alternating projections and Douglas–Rach-
ford for sparse affine feasibility, IEEE Trans. Signal Process. 62 (18) (2014)

4 86 8–4 881 . 
[16] C. Hou , F. Nie , X. Li , D. Yi , Y. Wu , Joint embedding learning and sparse regres-

sion: a framework for unsupervised feature selection, IEEE Trans. Cybern. 44

(6) (2017) 793–804 . 
[17] J.J. Hull , A database for handwritten text recognition research, IEEE Trans Pat-

tern Anal. Mach. Intell. 16 (5) (1994) 550–554 . 
[18] L. Jacob , G. Obozinski , J.P. Vert , Group Lasso with overlaps and graph Lasso,

in: Proceedings of the International Conference on Machine Learning, 2009,
pp. 433–440 . 

[19] B.H. Jansen , J.R. Bourne , J.W. Ward , Autoregressive estimation of short segment

spectra for computerized EEG analysis, IEEE Trans. Biomed. Eng. BME-28 (9)
(1981) 630–638 . 

20] T.N. Lal , M. Schroder , T. Hinterberger , J. Weston , M. Bogdan , N. Birbaumer ,
B. Scholkopf , Support vector channel selection in BCI, IEEE Trans. Biomed. Eng.

51 (6) (2004) 1003–1010 . 
[21] H.A. Le Thi , M.C. Nguyen , DCA based algorithms for feature selection in multi-

-class support vector machine, Ann. Oper. Res. 249 (1-2) (2016) 273–300 . 

22] L. Meier , S.V.D. Geer , P. Bühlmann , The group Lasso for logistic regression, J.
Royal Stat. Soc. 70 (1) (2010) 53–71 . 

23] T. Ochiai , S. Matsuda , H. Watanabe , S. Katagiri , Automatic node selection for
deep neural networks using group Lasso regularization, in: Proceedings of the

IEEE International Conference on Acoustics, Speech and Signal Processing, 2017,
pp. 5485–5489 . 

24] L. Pan , N. Xiu , J. Fan , Optimality conditions for sparse nonlinear programming,
Sci. China Math. 60 (5) (2017) 759–776 . 

25] S. Raman , T.J. Fuchs , P.J. Wild , E. Dahl , V. Roth , The Bayesian group-Lasso for

analyzing contingency tables, in: Proceedings of the International Conference
on Machine Learning, 2009, pp. 881–888 . 

26] I. Rodriguez-Lujan , J. Fonollosa , A. Vergara , M. Homer , R. Huerta , On the cali-
bration of sensor arrays for pattern recognition using the minimal number of

experiments, Chemom. Intell. Lab. Syst. 130 (2014) 123–134 . 
[27] V. Roth , B. Fischer , The group-Lasso for generalized linear models: uniqueness

of solutions and efficient algorithms, in: Proceedings of the International Con-

ference on Machine Learning, 2008, pp. 848–855 . 
28] N. Simon , J. Friedman , T. Hastie , R. Tibshirani , A sparse-group Lasso, J. Comput.

Graph. Stat. 22 (2) (2013) 231–245 . 
29] N. Subrahmanya , Y.C. Shin , Sparse multiple kernel learning for signal process-

ing applications, IEEE Trans. Pattern Anal. Mach. Intell. 32 (5) (2010) 788–798 .
30] N. Subrahmanya , Y.C. Shin , A variational Bayesian framework for group feature

selection, Int. J. Mach. Learn. Cybern. 4 (6) (2013) 609–619 . 
[31] H. Tao , C. Hou , F. Nie , Y. Jiao , D. Yi , Effective discriminative feature selection
with nontrivial solution, IEEE Trans. Neural Netw. Learn. Syst. 27 (4) (2016)

796–808 . 
32] V. Vapnik , Statistical Learning Theory, Wiley, Chichester, New York, 1998 . 

33] A. Vergara , S. Vembu , T. Ayhan , M.A. Ryan , M.L. Homer , R. Huerta , Chemical gas
sensor drift compensation using classifier ensembles, Sens. Actuators B Chem.

166–167 (2012) 320–329 . 
34] J.N. Weinstein , E.A. Collisson , G.B. Mills , K.R. Shaw , B.A. Ozenberger , K. Ellrott ,

I. Shmulevich , C. Sander , J.M. Stuart , Cancer genome atlas research network,

Nat. Genet. 45 (10) (2013) 1113–1120 . 
35] J. Weston , C. Watkins , Support vector machines for multi-class pattern recog-

nition, in: Proceedings of the European Symposium on Artificial Neural Net-
works, Bruges, Belgium, 1999, pp. 219–224 . 

36] J. Xu , F. Nie , J. Han , Feature selection via scaling factor integrated multi-class
support vector machines, in: Proceedings of the Twenty-Sixth International

Joint Conference on Artificial Intelligence, AAAI Press, 2017, pp. 3168–3174 . 

[37] G.B. Ye , Y. Chen , X. Xie , Efficient variable selection in support vector machines
via the alternating direction method of multipliers, in: Proceedings of the

Fourteenth International Conference on Artificial Intelligence and Statistics, in:
Proceedings of Machine Learning Research, 15, PMLR, 2011, pp. 832–840 . 

38] M. Yuan , Y. Lin , Model selection and estimation in regression with grouped
variables, J. Royal Stat. Soc. 68 (1) (2006) 49–67 . 

39] X. Zhou , D.P. Tuck , MSVM-RFE: extensions of SVM-RFE for multiclass gene se-

lection on DNA microarray data, Bioinformatics 23 (9) (2007) 1106–1114 . 

Fengzhen Tang received the B.Eng degree in software en-

gineering and M.Sc degree in computer science and tech-
nology from Northeastern University, Shenyang, China, in

2009 and 2011, respectively, and the Ph.D. degree in com-
puter science from University of Birmingham, Birming-

ham, UK, in 2015. She is an Assistant Researcher with

the State Key Laboratory of Robotics, Shenyang Institute of
Automation, Chinese Academy of Sciences, China. Her re-

search interests include machine learning, computational 
neuroscience, robotics and signal processing. 

Lukáš Adam received the Ph.D. degree in nonsmooth op-

timization from Charles University, Prague, Czech Repub-
lic, in 2015. In 2012, he joined the Institute of Information

Theory and Automation, Prague, and in 2015, he moved

to the Humboldt University of Berlin, Germany. Initially
working on nonsmooth optimization, he later became in-

terested in optimization with partial differential equation
constraints. He tries to apply his theoretical knowledge by

cooperating with engineers. 

Bailu Si received the Ph.D. in Computer Science from Uni-
versity of Bremen, Germany. He is a principal investigator

in the State Key Laboratory of Robotics, Shenyang Insti-

tute of Automation, Chinese Academy of Sciences, China.
Prior to this, he did Postdoc research in International

School for Advanced Studies, Italy, and Weizmann Insti-
tute of Science, Israel, respectively. His research interests

include Intelligent Robotics, Machine Learning, and Com-
putational Neuroscience. 

http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0014
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0014
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0014
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0014
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0029
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0029
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0029
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0030
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0030
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0030
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0031
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0031
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0031
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0031
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0031
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0031
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0032
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0032
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0035
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0035
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0035
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0037
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0037
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0037
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0037
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0038
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0038
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0038
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0039
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0039
http://refhub.elsevier.com/S0925-2312(18)30840-3/sbref0039

	Group feature selection with multiclass support vector machine
	1 Introduction
	2 Sparsity inducing terms
	2.1 Support vector machines
	2.2 Group feature selection via group lasso
	2.3 Multiclass feature selection via group lasso
	2.4 Multiclass group feature selection via group lasso

	3 Simultanous multiclass group feature selection
	3.1 Multiclass recursive group feature elimination
	3.2 Solving (8) with ADMM
	3.3 Numerical solution procedure
	3.4 Connection to the group lasso

	4 Numerical experiments and discussion
	4.1 Category 1: Comparison with existing methods
	4.2 Category 2: datasets with a large number of features
	4.3 Category 3: neuroscience application

	5 Conclusion
	 Acknowledgments
	 References


